
 Studio e test di file-system
distribuiti per HEP

Giacinto Donvito
INFN-BARI

outlook

New trends on open source storage software
Overview on Lustre

Lustre architecture and features
Some Lustre examples
Tier3 on Lustre
Future developments

Hadoop: concepts and architecture
Feature of HDFS
Few HDFS examples
Tier3 on HDFS

Hepix FS-WG and CMS specific test and results
Conclusions

TRENDS on storage software

Requirements:
CPUs are always much more eager of data, and the
performance of disks are not growing as much as CPUs
Very often the users requires native posix file system

FUSE helps a lot in providing a layer that could be
used to implement “something like” posix filesystem

Scalability is the main issues: what is working with 10
CPUs surely may experience problems with 1000 CPUs
... physics analysis is a particular use case

Lustre

Typical Lustre
infrastructure

 Lustre file-system is a typical parallel file-system in which all the client are able to
use standard posix call to access files

 The architecture is designed in order to have 3 different function that can be spitted
among different host or joined in the same machine:
 MDS: this service hosts the metadata information about each file and its location

 There could be basically one
active MDS per file-system

 OSS: is the service that hosts the
data
 There could be up to 1000 OSS

 Clients: are hosts that are able to
read lustre file-system
 There could be up to 20000

clients in a cluster

Lustre 1.8.3
 All administrative operations can be done using few command line utilities

and the “/proc/” file-system
 The interface is very “admin-friendly”

 It is quite easy to put an OST in read-only
 It is possible to make snapshots and backups using standard linux tool and

features like LVM and rsync
 It is possible to define easily how many stripes should be used to write each

file and how big they will be (this could be configured at a file or directory
level)

 Using SAN it is possible to serve the same OST with two servers and enable
the automatic fail-over

 Very fast metadata handling
 In case of an OST failure only files (fully or partially) contained in that

partition becomes unavailable
 it is still possible to read partially the file in case it is split on few devices

 It is possible to have a “live copy” of each device (for example using DRDB
and heartbeat)
 it is feasible for both data and metadata

 The client caches both data and metadata in kernel space
 (temporarily) failure of a server are not disruptive in case of repetitive

operation
 The cache buffer on the client is shared: this is an advanced if several

processes read the same file
 the size of this buffer could be tuned (by /proc/ file-system)

 It is easy (and scriptable) to understand which OST hosts each file
 The performance obtained by the application does not depend on the

version of the library used (this could help when old experiment framework
is still used)

 It is possible to tune the algorithm used in order to distribute the files among
the OSTs, giving more or less importance to the space available on each OST
itself

Lustre 1.8.3

 Using ext4 backend, it is possible to use 16TB OST.
 INFINIBAND supported as network connection
 Standard Posix ACLs are supported: it is possible to use standard

unix tool to manage them
 The ACLs should be enabled “system-wide” (on or off for the whole

cluster)
 On the OSS, it is mandatory to recompile the kernel or it is possible

to use (RedHat) kernels provided from the official web-site
 On the client it is not strictly required
 The "Patchless" client could work basically on every distribution

 Not all the kernel release are fully supported (2.6.16> kernel <= 2.6.30)
 http://wiki.lustre.org/index.php/

Lustre_Release_Information#Lustre_Support_Matrix

Lustre 1.8.3

http://wiki.lustre.org/index.php/Lustre_Release_Information#
http://wiki.lustre.org/index.php/Lustre_Release_Information#
http://wiki.lustre.org/index.php/Lustre_Release_Information#
http://wiki.lustre.org/index.php/Lustre_Release_Information#

 OSS Read Cache:
 It is now possible to cache read-only data on an OSS
 It uses a regular Linux “pagecache” to store the data
 OSS read cache improves Lustre performance when several clients access

the same data set
 OST Pools

 The OST pools feature allows the administrator to name a group of OSTs
for file striping purposes

 an OST pool could be associated to a specific directory or file and
automatically will be inherited by the files/directory created inside it

 Adaptive Timeouts:
 Automatically adjusts RPC timeouts as network conditions and server

load changes.
 Reduces server recovery time, RPC timeouts, and disconnect/reconnect

cycles.

Lustre 1.8.3

Lustre 1.8.x -- Example

Lustre
MDS

Lustre
OSS
Lustre
OSS
Lustre
OSS

Lustre
OSS

Lustre
OSS

Lustre
OSS

Experiments
Data

Users
Home

Lustre

Worker
Node
Worker
Node
Worker
Node
Worker
Node
Worker
Node
Worker
Node

Worker
Node

User
Interface

User
Interface

User
Interface

User
Interface

 ~500 CMS + Phedex WAN
transfers

 ~4MB/s per job slot
15 disk servers

Lustre/StoRM Performance
HEP Tier2

 The rate are measured with real CMS analysis jobs.
 SRM/gridftp layer provided by StoRM

Test on storage hw and sw:
few results

•xyratex 2 FC controller,
48+48 disk
•up to 96 TB RAW
•2 disk servers

•it is possible to achieve
HA configuration (see next
slide)
•an aggregate of ~480MB/s

!"

!"#$%"&'()$!'*(+,)$!-&').$/*0"1)&
Lustre

Configurations

Lustre
Configurations

Disco
Lustre exp

Disco
Lustre exp

CPUCPUCPUCPU

Disco
Lustre exp

Disco
Lustre exp

Disco
Lustre exp

Disco
Lustre exp

La replica sync
fra i server è fatta

via software:
DRBD

Lustre FS

Questo comporta
una duplicazione
totale o parziale

dei dati

Lustre -- at a
supercomputing centre

!"#$%&'()*+,$&-*+./&+(&'0%&1$,$%230*,&456&7)*/28)#&&9::;

!"#$%&'($')*++',&%-.%/(01&'
! -<66&*+%,$*&2=2($>&?&8+2&)32$*@$A&BC&DEF2$.&(8*)0,8#0(

! -8$=&02$&G:&'0%&HI*$&JBG::&2$*@$*2&+2&"''

! <&2I%,K$&+##&+.8I$@$A&LG&DEF2$.&(8*)0,8#0(

“Typical numbers for a high-end MDT node (16-core,
64GB of RAM, DDR IB) is about 8-10k creates/sec, up
to 20k lookups/sec from many clients.”

Lustre FUTURE (2.0)
ZFS back-end support:

end-to-end data integrity
SSD read cache

HSM support
with home made plugin

Changelogs
Record events that change the filesystem namespace or file
metadata.

lustre_rsync
provides namespace and data replication to an external
(remote) backup system without having to scan the file
system for inode changes and modification times

hadoop

Hadoop: concepts and
architecture

Moving data to CPU is costly
Network infrastructure
And performance => latency
Moving computational to data could be the solution

Scaling the storage performance, following the increase of
computational capacity, is hard

Increasing the number of disks together with the
number of CPU could help the performance

There is the need to take into account machines failures in
a computing centre
DB also could benefit from this architecture

Hadoop: highlight
It is developed till 2003 (born @google)
It is a framework that provide: file-system,
scheduler capabilities, distributed database
Fault tolerant

Data replication
DataNode failure is ~transparent
Rack awareness

Highly scalable
It is designed to use the local disk on the worker
nodes

Java based
XML based config file

Hadoop: highlight

Using FUSE => some posix call supported
roughly “all read operation” and only “serial write
operations”

Web interface to monitor the HDFS system
Java APIs to build code that is “data location aware”
CKSUM at file-block level
SPOF => metadata host
HDFS shell to interact natively with the file system
Metadata hosted in memory

sync with the file-system
it is easy to do back-up of the metadata

Hadoop: concepts and
architecture

! !

!"#$%&'(%)(#()*+,(-.*$,

/012(3+*,"$

4+*,"$("%5,

6#&,(6%5,
4.,#$,()*+,

4+%7,()*+,

0#$#(6%5,

0#$#(6%5,

0#$#(6%5,

2+*5,(*"78*.,5(9':(;/#5%%8(<(=>,(5,)*"*$*?,(@A*5,BC(=%&(D>*$,C(EFG,*++'

D.*$,(8#3H,$

!3H(8#3H,$

Hadoop: concepts and
architecture

! !

!"#$%&'()*+

,'()*+%*-.)

/01)%/-.)
23)*%4(')

,'-5)%4(')

"0+0%/-.)

"0+0%/-.)

"0+0%/-.)

$'(.)%(*53(6).%789%:!0.--3%;%<=)%.)4(*(+(>)%?@(.)AB%<-1%C=(+)B%2DE)(''8

E)0.%7'-&F5

E)0.%7'-&F5

E)0.%7'-&F5

G*0+-18%-4%0%4(')%6)0.

 Splitting files in
different pools may
give performance
benefit when
reading them back

 having the data
replicated could be
of help

Hadoop: concepts and
architecture

! !

!"#$%&'()*+,-*./%$-0,-'12

$)*3'%*/4(*0'3%526%7!,3..(%8%9:'%3';*/*-*<'%1=*3'>?%9.@%A:*-'?%BC&'*))2

",-,+'/-'0

&,+D &,+D

Hadoop: concepts and
architecture

! !

!"!!#!!!$! %!&'())*+! %!,!+!-!(!.!+
!"#$"#

%&'"(#

%&'"(#

)*$"#

+!,-(.#!./-#-0
1"#$"#'.-.(!#.(&''./-#-0
1"#$"#.,-*.,2&-$(3.4!5&0

62"77(&.'!%#'.)*$"#.83.9&30
:&/",&'.!"#$"#.');*)7),-*#(30

Hadoop: few examples

10x data
~6x time

Per node: 2 quad core Xeons @ 2.5ghz, 4 SATA disks, 8G
RAM (upgraded to

16GB before petabyte sort), 1 gigabit ethernet.
Per Rack: 40 nodes, 8 gigabit ethernet uplinks.

“Sort Exercise”

Hadoop: few examples
“CMS US example”

•2.5TB < Each DataNode < 21TB
•~600 Core
•SRM/gridftp layer provided by FUSE and BestMan

Up to 8GByte/s

Up to 350 ops/s

=> 800TB

HADOOP T3 test
Hadoop

NameServerWN
Hadoop

dataNode

WN
Hadoop

dataNode

WN
Hadoop

dataNode

WN
&

Hadoop dataNode

Using 7 old test machine:
2xXeon CPU
4GB RAM each
2x120GB HD each
1Gbit/s eth

1 Admin node + WN
6 data node + WN

• 0.8TB of redundant
storage

• 14 concurrent I/O
processes

• 150 MB/s of aggregate
bandwidth

• up to 2 concurrent
node failed w/o any
service interruption

hdfs cluster

HDFS dummy Scalability test

1 disk per node

2 disks per node

80MB/s avg

150MB/s avg

HADOOP: FUTure

Support for “append”

Support for “sync” operation

Cluster NameNode

CMSSW new test
thanks to LeoNARDO Sala!!

CMSSW new test
thanks to LeoNARDO Sala!!

CMSSW new test
thanks to LeoNARDO Sala!!

AM 19/04/2010 31

Credits for the late period

 The new test laboratory at KIT was built on the top of hardware kindly
 provided by Karlsruhe Institute of Technology (rack and network
 infrastructure, load farm) and E4 Computer Engineering (new disk server).
 CERN had contrubuted with some funds to cover a part of human hours.

 These people participated in provisioning, funding, discussions, laboratory
 building, preparation of test cases and test framework, tests and elaboration
 of the results:

 CASPUR A.Maslennikov (Chair), M.Calori (Web Master)
 CEA J-C.Lafoucriere
 CERN B.Panzer-Steindel, D. van der Ster, R.Toebbicke
 DESY M.Gasthuber, P.van der Reest
 E4 C.Gianfreda
 INFN G.Donvito, V.Sapunenko
 KIT J.van Wezel, A.Trunov, M.Alef, B.Hoeft
 LAL M.Jouvin
 RZG H.Reuter

AM 19/04/2010 33

Hardware setup 2010 at KIT

10G Wirespeed

10G / 1G
network

LOAD FARMSERVER

 8 cores X5570 @ 3GHz, 24GB
 3 Adaptec 5805 8p RAID controllers
 24 Hitachi drives of 1 TB
 1 Intel 82598EB 10G NIC

 10x 8 cores E5430 @ 2.66GHz,16GB

 This setup reperesents well an elementary fraction of a typical large
 hardware installation and has basically no bottlenecks:

o Each of the three Adaptec controllers may deliver 600+ MB/sec (R6)
o Ttcp memory-memory network test (1 server – 10 clients) shows full 10G speed

 (In 2009 we were limited by 4x 1G NICs and only one RAID controller)

10 x 1G

AM 19/04/2010 34

Details of the current test environment

 RHEL 5.4/64bit on all nodes (kernel 2.6.18-164.11.1.lustre / -164.15.1)
 Lustre 1.8.2
 GPFS 3.2.1-17
 OpenAFS/OSD 1.4.11 (trunk 984)
 dCache 1.9.7

 Use Case 1: CMS “Data Merge” standalone job - fw v.3.4.0
 (Giacinto Donvito)

 Use Case 2: ATLAS “Hammercloud” standalone job – fw v.15.6.1
 (Daniel van der Ster)

Tunables
 We report here, for reference, some of the settings that were used so far.

Diskware: three stanadlone RAID-6 arrays of 8 spindles, stripe size=1M

Lustre: No checksumming, No caching on server

 Formatted with: “-E stride=256 -E stripe-width=1536”
 Data were spread over 3 file systems (1 MGS +3 MDT)
 OST threads: “options ost oss_num_threads=512”
 Read-aheads on clients: 4MB (CMS), 10MB (ATLAS)

GPFS: 3 NSDs, one per RAID-6 array
 3 file systems (one per NSD)
 -B 4M –j cluster
 maxMBpS 1250
 maxReceiverThreads 128
 nsdMaxWorkerThreads 128
 nsdThreadsPerDisk 8
 pagepool 2G

AFS: 3 XFS vicep or dCache pool partitions (one per RAID array)
(dCache) Formatted with: “-i size=1024 -n size=16384 -l version=2 -d sw=6,su=1024k”
 Mounted with: “logbsize=256k,logbufs=8,swalloc,inode64,noatime”
 Afsd options: “memcache, chunksize 22, cache size 500MB”
 Dcache options: DCACHE_RAHEAD=true, DCACHE_RA_BUFFER=(100KB-100MB)

Current CMS use case results

 For this test case, GPFS and Lustre are almost equally efficient. AFS/Vicep-over-Lustre
 looks surprisingly good.

 The dCache result is very fresh and still has to be investigated. We however plot it here
 along with the others since the CMS test job was taken from the real life environment.
 The dCache team expressed an interest to verify the correctness of dCache and/or setup
 usage in this case, this will shortly be done in collaboration with them.

Current ATLAS use case results

 The ATLAS job was prepared in the beginning of 2010; since then, ATLAS had migrated to
 a new data format and, consequently, to the new data access pattern. We were still using
 the previous version known for its high fraction of random access I/O. Thus it was of no
 surprise to discover that native Lustre was the most inefficient solution for this use case.
 However, AFS/Vicep with Lustre transport had shown the best results, like in the case of CMS.
 We were yet unable to run the dCache-based ATLAS test, this will be done soon.

Conclusions
Lustre Hadoop

Posix Functionalities Fully Partially
Quota Fully Directory Quota

Data Replica Not easy Easy
Metadata Replica Not natively Not natively

Resilient on SPOF Not natively Not natively

Management Cost Low Could be costly

Platform Supported SLC4/5 - Suse Linux Every Platform

Installation procedure Easy Fairly easy

Doc/Support Good Fairly good

Hep experience Fairly good Just starting now

Conclusions

Lustre born in the HPC environment and it can guarantee good
performance on standard servers (SAN or similar)

completely posix compliant
the scalability seems guaranteed from the biggest installation in
supercomputing centres, but the use case are different from the HEP
analysis

Hadoop can provide needed performance and scalability by means
of commodity hw

maybe it requires more man power to manage it if the installation
grow too much in size
not fully posix compliant
Is not easy to use MapReduce on HEP code, it could be an
interesting development for “future” experiments?

