

Lab Nuc App

Laboratory for Nuclear Technologies Applied to the Environment

Discriminating irrigation and rainfall with proximal y-ray spectroscopy

NUCLEAR TECHNOLOGIES FOR AGRICULTURE 4.0 – Virtual Conference – 18 December 2020

Andrea Serafini, Matteo Albéri, Enrico Chiarelli, Fabio Mantovani, Michele Montuschi, Kassandra G.C. Raptis, Virginia Strati

Summary

- » Experimental site and setup
- » Field of View of a y-ray station
- » Rationale behind proximal y-ray spectroscopy
- » Sensing rain through y-ray spectroscopy
 - » Genesis of rain-induced y activity
 - » Modeling of rain-induced y activity
- » Discriminating rains and irrigations

Experimental site

Agrometeorological station (w)

Gamma station (y)

Field-scale measurements with **y**-ray spectroscopy

γ-rays are high energy photons which can travel **hundreds of meters** in air.

By carefully adjusting the installation **height**, the station can collect **γ**-rays and **information** coming from **large areas**.

By placing the station at **2.30 m** it is possible to cover a **~25 m radius** footprint area.

Sensing an irrigation through y-rays

After an irrigation, the y signal is **attenuated** by the **water deposited** between the emitters (i.e. the **soil**) and the detector.

The soil water content w (V_{water}/V_{soil}) is inversely proportional to the signal S_K produced by the ⁴⁰K decay measured by the detector:

$$\boldsymbol{w(t)} = \frac{A}{\boldsymbol{S}_{K}(t)} - B$$

Time series of the estimated soil water content

²¹⁴Pb is a decay product of radon, which is present in the atmosphere

⁴⁰K and ²¹⁴Pb are two radionuclides **naturally present** in the environment

⁴⁰K and ²¹⁴Pb emit **y-rays** that can be sensed by spectroscopic stations

⁴⁰K and ²¹⁴Pb are homogeneously distributed in soils. Their abundance is constant in time.

An experimental observation...

Genesis of rain-induced y activity

RAINOUT (in-cloud process): radon daughters attach to aerosols which are scavenged by rain droplets.

WASHOUT (below cloud p.): raindrops, falling, collect radon daughters' nuclei present in the atmosphere.

Genesis of rain-induced y activity

- The enhancement in activity is induced by the atmospheric ²¹⁴Pb and ²¹⁴Bi, gamma emitters daughters of ²²²Rn.
- These radon daughters fall from the clouds **to the ground with a precipitation**, leading to an increase in the activity beyond the terrestrial background.
- Such an activity augmentation is measurable using **gamma-ray spectroscopy** techniques.
- ²¹⁴Pb (half-life = 26.8 min) can be observed through its gamma line at E_{γ} = 351 keV; ²¹⁴Bi (half-life = 19.9 min) can be observed through its gamma line at E_{γ} = 609 keV.

Modeling rain-induced y activity

- The additional ²¹⁴Pb nuclei deposited by rain cause a sudden increase in the γ activity over the environmental background.
- This additional y activity vanishes following an exponential law as ²¹⁴Pb nuclei decay to ²¹⁴Bi.
- As in ²¹⁴Pb case, **rain deposits additional** ²¹⁴**Bi nuclei** to the ground, increasing the γ activity over the background.
- ²¹⁴Bi nuclei created by the **decays of** ²¹⁴Pb create an **additional source term**, which **fights against** ²¹⁴Bi **exponential decay**.
- Present work considers the activity of 214 Pb (E_y = 351 keV, halflife = 26.8 min), being the first 222 Rn daughter to undergo y decay.

Experimental data and model fit

Backgrounds: daily ²¹⁴Pb oscillations

Changes due to daily "**radon oscillations**" are **slow**.

Typically, Pb net counts oscillate in a **30%** range around the mean value.

Instead, **during rains** the Pb count rate **suddenly** increase of a factor **x5**.

How well do we reconstruct the ²¹⁴Pb signal?

The reliability of the model is demonstrated by the **good linear relation** observed between **measured** and **reconstructed** ²¹⁴**Pb** net count rate during the rain time.

The **slope** and **intercept** best fit values of (0.99 \pm 0.19) and (0.04 \pm 0.48) compatible respectively with 1 and 0 at 1 σ level, allowing to **exclude** statistically significant **systematic effects**.

A relation between rain rate and y-activity

 $\Delta C = \Delta T \cdot \mathbf{A} \cdot R^{\mathbf{d}}$

 $\Delta C [cps] = impulsive count rate parameter.$ $\Delta T [h] = time resolution = 0.25 h.$ $R [mm h^{-1}] = rain rate.$ $A [cps mm^{-d} h^{d-1}] = proportional constant.$ d [adim.] = power of R.

- The 82 0.25 h impulses of rain of the selected episodes were reported in figure.
- This allows to determine the A and d parameters that describe the ΔC dependence on the rain rate R for the mean rain episode.
- The *d* value agrees with values reported in literature.

Sensing a rainfall through y-rays

During a rainfall, the **soil water content** w can still be estimated by the attenuated S_K signal.

The signal S_{Pb} is instead enhanced by the additional ²¹⁴Pb atoms collected in the cloud and brought to ground by rain.

The rainfall rate **R** is **proportional** to the **square** of the of ²¹⁴Pb signal increase ΔS_{Pb} :

$$R = C \cdot \Delta S_{Pb}^2$$

Discriminating irrigation and rainfall through y-rays

Take away messages

Proximal y-ray spectroscopy is an effective tool for estimating **soil water content** at **field-scales**. It is a promising technique in view of **satellite data calibration**.

A sudden **increase** in the ²¹⁴**Pb gamma signal** is an unequivocal smoking gun for a **rainfall**. This signal does not increase in the case of irrigation.

The sudden increase in y-ray signal S during rain shows a relation with the rain rate. The relation is found to be $\Delta S = \mathbf{k} \cdot \sqrt{\mathbf{R}}$, in accordance with literature.

If you're still curious...

Modelling Soil Water Content in a Tomato Field: Proximal Gamma Ray Spectroscopy and Soil-Crop System Models

Strati V., Albéri M., Anconelli S., Baldoncini M., Bittelli M., Bottardi C., Chiarelli E., Fabbri B., Guidi V., Raptis K.G.C., Solimando D., Tomei F., Villani G. and Mantovani F. Agriculture, 8(4), 60 (2018)

Biomass water content effect on soil moisture assessment via proximal gamma-ray spectroscopy

Baldoncini M., M. Albéri, C. Bottardi, E. Chiarelli, K. G. C. Raptis, V. Strati, and F. Mantovani. Geoderma, 335, 69-77 (2019)

Investigating the potentialities of Monte Carlo simulation for assessing soil water content via proximal gamma-ray spectroscopy

Baldoncini, M., M. Albéri, C. Bottardi, E. Chiarelli, K. G. C. Raptis, V. Strati, and F. Mantovani Journal of Environmental Radioactivity, 192, 105-116 (2018)

Soil moisture as a potential variable for tracking and quantifying irrigation: a case study with proximal y-ray spectroscopy data

Filippucci, P., A. Tarpanelli, C. Massari, A. Serafini, V. Strati, M. Alberi, K. G. C. Raptis, F. Mantovani and L. Brocca (2020). Advances in Water Resources 136, 103502 (2020)

Rain rate and radon daughters' activity.

Bottardi, C., M., Baldoncini, M. Albéri, E. Chiarelli, M. Montuschi, K. G. C. Raptis, A. Serafini, V. Strati, and F. Mantovani Atmospheric Environment, 238, 117728 (2020)

Discriminating irrigation and rainfall with proximal gamma-ray spectroscopy

Serafini, A., Albéri, M., Chiarelli, E., Montuschi, M., Raptis, K. G. C., Strati, V., & Mantovani, F. 2020 IEEE International Workshop on Metrology for Agriculture and Forestry (MetroAgriFor), 191-195 (2020)

Follow us on Twitter @nuctechlab

Follow us on Instagram @nuctechlab

Thank you for your attention!