

Noise x Exposure Time

Flash vs. Fusion

Flash

- Up to 100 ms the noise is practically the same
- The hot pixels are spread ~uniformly throughout the sensor

Fusion

- Up to 100 ms the noise is practically the same
- The hot pixels are more concentrated on the borders of the sensor
- Strong effect for 1000 ms and drastic change for 10000 ms
- The mean value of the pixels on the center seems to decrease

iCDF to see the probabilities

From 1 to 100 ms Fusion presents less noise variation, changing or about 0.0001% pixels

For longer exposure times (>100 ms) Fusion noise starts to increase rapidly

Absolute values (intensity)

Just to see the absolute values....nothing new...

Center vs. Border

 The concentration on the border is much stronger for the Fusion sensor

Center vs. Border

- The concentration on the border is much stronger for the Fusion sensor
- But there are hot pixels on the center as well

Note that the right side is different from the left side

Fusion Borders

Fusion is asymmetric...

Fusion Border x Center (checking by eye)

275

- Examples of:
 - A typical border pixel
 - Mean value increasing
 - Noise increasing
 - A typical center pixel
 - Mean value decreasing
 - Noise increasing (less)

Fusion Border x Center (checking by eye)

- But center pixels can algo go higher...
 - Mean value increasing
 - Noise increasing (more)

Dark current Flash vs. Fusion

C13440-20CU

ORCA-Flash 4.0 V3 Digital CMOS camera

Dark current	0.06 electrons/pixel/s (Air Cooled to -10° C) (typ.)	
	0.06 electrons/pixel/s (Water Cooled to -10° C) (typ.)	
	0.006 electrons/pixel/s (Water Cooled to -30° C) (typ.)	

Under investigation but...

- Dark current is dependent of exposure time
- For short exposure time it can be ignored (other noise sources dominate)
- For long exposure times, dark current can dominate
- Fusion has a dark current level much higher than the Flash

ORCA-Fusion Digital CMOS Camera C14440-20UP/C14440-20UP01

×1	cooling temperature:-5 °C	0.5 electrons/pixel/s
	cooling temperature:-15 °C	0.2 electrons/pixel/s

Preliminary conclusions

- Analysis is ongoing but...
 - Fusion seems to have lower noise up to 100 ms of exposure time
 - Fusion sensor is much more sensitive to long exposure times (>100 ms)
 - Mean shifting and RMS noise increasing
 - With drastic change for 10 seconds

