Diffusion along the Drift Direction

Atul Prajapati, 23/11/2020

Diffusion along Drift direction in LIME

- Both ER and NR tracks are selected between 0-10 mm far and 500-510mm far from the GEM.
- Tracks which are closer to the GEM (between 0-10mm from GEM) diffuse less.
- Tracks which are far from GEM (between 500-510mm from GEM) diffuse a lot.

He-NR

1050

1000

900

1350

1150

pic_run13_ev66

Mean x

Mean y

1250

Std Dev x

Std Dev y

5317636

1200

1000

57.9

57.92

130

120

110

100

1300

pic_run14_ev798

5317636

2000

1300

57.97

57.96 0

1200

1000

800

600

400

200

2100

Entries

Mean x

Mean y

Std Dev x

Std Dev y

10 keV NR

pic_run7_ev803

5317636 1700

1101

57.99

1600

1400

1200

1000

800

600

400

200

1800

57.81

Entries

Mean x

Mean y

Std Dev x Std Dev y

30 keV NR

1200

60 keV NR

He-NR

100 keV NR

300 keV NR

600 keV NR

He-NR

1000 keV NR

10 keV ER

30 keV ER

60 keV ER

ER

100 keV ER

300 keV ER

600 keV ER

ER

100 keV ER

300 keV ER (Different colour scale)

600 keV ER (Different colour scale)

ER

1000 keV ER

Stopping Power for electron in He: CF4 Gas

$$\rho_{Tot} = 0.00159 \frac{g}{cm^3}$$

$$StoppingPower = 3.18 \frac{keV}{cm}$$
Near 1 MeV region

Source: https://physics.nist.gov/PhysRefData/Star/Text/ESTAR.html

Conclusion

- Tracks which are far from GEM (between 500-510mm) diffuses a lot and because of this sometimes intensity of these tracks is similar the noise level of the camera. This is very evident in case of high energy ERs.
- 1 MeV electron is very difficult to fully contain inside the LIME, and it also deposits very low energy in the gas mixture. Therefore it is very difficult to find the tracks for high energy ER (1 MeV range).