

Ion emission from laser-generated plasma, lλ² dependence and FLAME facilities

L. Torrisi and S. Gammino INFN-LNS of Catania &

Physics Department of Messina University

Agenda Terzo Meeting Generale Coll. LI²FE; 12 Marzo 2010 Ore 11.00, Frascati, INFN-LNF, Aula Touschek

Non-equilibrium Plasma Ablation yield Equivalent temperature (T_i, T_e, T_o) Equivalent density (n_{at}, n_i, n_e, n₀) Temperature and density gradients Equivalent acceleration voltage (V_0) Electric field (E = V_0 / λ_D) **Fractional ionization** Angular distribution Ion energy distribution Charge state distribution X-ray distribution $I = \mathcal{E}_1 / S \Delta t \quad (W/cm^2)$ ∞ Free electron abs ~ λ

f (target composition, geometry,...)

Know –how: INFN-Projects ECLISSE (2000-2002), PLAIA (2003-2005), PLATONE (2006-2008) and now **PLEIADI (Plasma Laser Energetic Ion Acceleration & DIagnostics:** 2009-2010). National Responsible: Prof. Lorenzo Torrisi

(XeCl-308 nm (20 ns), KrCl-222 nm (10 ns), LECCE 100mJ, single shot or 10 Hz r.r.) 10⁸ W/cm² (Nd:Yag, 532 nm, 3 ns, 400 mJ, single MESSINA shot or 20 Hz r. r.) 10¹⁰ W/cm² (Nd:Yag, 1064 nm, 532 nm, 355 nm, 9 ns, 1 CATANIA J, single shot or 30 Hz r. r.) 10¹¹ W/cm² PALS, PRAGUE $(C_3F_7I, w_1=1315 \text{ nm}, w_2=658 \text{ nm}, w_3=438$ nm, 300 ps, 1 KJ, single shot) **10¹⁶ W/cm²** kT≈ 5 eV - 50 keV **J**0.5 $K_B T_i(eV) = 2 \cdot 10^{-5} \left| I_L(\frac{W}{cm^2}) \lambda^2 (\mu m^2) \right|^{-5}$ kТ T, n, E_p , P_s , <q>, E_{field} , ... $\infty \mid \lambda^2$

LASER	Туре	Pulse Energy	Pulse duration	Rep. Rate	Power	Intensity	Use
FLAME INF- Frascati-Italy	Ti:Sa	5J	20 fs	10Hz	250 TW	10 ²¹ Wan ²	Electron Acceleration
POLARIS Jena- Rossendorf- Germany	Ti:Sa	150 J	150 fs	0.1Hz	100 TW	10 ²¹ W/an ²	Electrons & Ions acceleration X-rays Materials
LOASIS Berkeley USA	Ti:Sa	4J	40 fs	10Hz	100 TW	10 ²⁰ W/an ²	Ion Acceleration
JAERI Kansai, Japan	Ti:Sa	28 J	25 fs	10Hz	100 TW	10 ²¹ W/an ²	Electrons acceleration, Protontherapy
LULI Palaiseau- Parys, France	Ti:Sa	301	320 fs	10Hz	100TW	5x10 ¹⁹ W/an ²	Ion acceleration
TRIDENT Los Alamos, USA	NdGlass	500 J	500 fs	5Hz	200 TW	5x10 ¹⁹ Wan ²	Ion Acceleration Protontherapy
VULCAN	NdGlass	500 J	300 fs-1 ps	10 ⁻³ Hz	100 TW	10 ²⁰ W/an ²	Electron & Ion acceleration- Astrophysics_Nu clear fusion
PHELIX	Ti:Sa- Nd:Glass	500 J	500 fs	10Hz	500 TW	10 ²⁰ W/an ²	Ion acceleration, Plasma.Physics
NIF (Lawrence Livermore National Laboratory) California USA	Nddass	20 J	13 fs	10Hz	500 TW	10 ²⁰ W/an ²	Multi LASER beans- Nuclear Fusion

Ion Collector (IC) Analysis in TOF

IC deconvolution method

Rad. Eff. and Def. in Solids, V. 163(4-6), 339, 2008

2,5

Ion Energy Analyzer

J. Wolowski, L. Torrisi et Al.; High Temperature Material processes 6, 521-528, 2002

L. Torrisi, L. Andò, S. Gammino and L. Laska, J. Appl. Phys. 91(5), 18, 2002

Ion charge state distributions

10¹⁶ W/cm² -PALS

IC-Detector

IEA-Detector

A. Szydlowski, J. Badziak, P. Parys, J. Wolowski, E. Woryna, K. Jungwirth, B. Kralikova, J. Krasa, L. Laska, M. Pfeifer, K. Rohlena, J. Skala, J. Ullschmied, F.D. Boody, S. Gammino and L. Torrisi *Plasma Phys. Control. Fusion* 45, 1417-1422, 2003

Sintillators+CCD; CR39; MCP; Radiochromic films; Si-Microstrips; SiC arrays; ...

Polyethylene

Aluminium

TOF-Monocrystalline Diamond detectors (PALS Experiment)

L. Torrisi, D. Margarone, L. Laska, M. Marinelli, E. Milani, G. Verona-Rinati, S. Cavallaro, L. Ryc, J. Krasa, K. Rohlena, J. Ullschmied *J. of Appl. Physics* 103, 083106, 1-6, 2008

Self-focusing effect & $Z_{max} \propto I$ (PALS Experiments)

L. Laska, K. Jungwirth, J. Krása, M. Pfeifer, K. Rohlena, J. Ullschmied, J. Badziak, P. Parys, J. Wolowski, F.P. Boody, S. Gammino and L. Torrisi; *Czech. J. of Physics* 54, Suppl. C, C370-C377, 2004

PALS Experiments (E/A vs. $l\lambda^2$)

L. Laska, K. Jungwirth, J. Krasa, M. Pfeifer, K. Rohlena, J. Ullschmied, J. Badziak, P. Parys, J. Wolowski, S. Gammino., L. Torrisi and F.P. Boody; *Appl. Phys. Lett.* 86, 081502, 2005

Laser and Particle Beams 26, 379-387, 2008.

b)

Dependence on the thin target :

Composition, Thickness, Geometry, Multilayers, Spot dimension, Focal position, Pulse duration, Pre-pulse, Doping, ...

Problem to solve:

High beam energy (proton energy up to 100 MeV); Ion selection Mono-energy Beam (narrow energy distribution); Ion dose/pulse (> 10¹⁰ particle/pulse) Ion directivity (magnetic focalization) High repetition rate (target moving) High reproducibility (laser beam energy) Plasma and Ion beam Detectors (TP, SiC and diamond detectors, Ion imaging diagnostics, detector arrays,...) Thin target geometry and multi-composition to drive ion jet

FLAME Facilities for Ion acceleration Applications:

- 1. Ion detection for <u>plasma diagnostics</u> and understanding of base physics mechanisms
- 2. Investigations on Ion accelerator systems and LIS
- 3. Multi-energetic and multi-ionic ion beams useful for <u>material treatments</u> (Multiple ion implantation, doping, polymeric plasma ion irradiations,...)
- 4. Proton beams for use in medical Therapy (Protontherapy)
- Ion beams useful for <u>nuclear investigation</u> (nuclear reactions, nuclear excitation and de-excitation,...)
- 6. Nuclear fusion ignition investigation
- 7. Astrophysical Field investigation
- 8. R & D of fast ion detectors (imaging, arrays,...)

Thank You for the attention