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• Gravity as a Field Theory


• The Fierz-Pauli theory 


• What is wrong with Fierz-Pauli?


• How to fix it
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Geometry or Particle?
The interpretations of Gravity

General Relativity Quantum Field Theory
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The Graviton

Spin 0

Spin 1

Spin 2

Interaction with photons

Repulsive classical force

Interacts with EMT

Attractive classical force
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Linearized Gravity



The Linearized Einstein-Hilbert Action

1 Introduction

In this paper we consider some properties of the harmonic gauge fixing condition in the
context of Linearized Massive Gravity (LMG) theory [1, 2, 3]. The harmonic gauge is adopted
in Linearized Gravity (LG) indipendently whether the theory is massive or not, but LMG
in the harmonic gauge displays some interesting physical properties which we would like to
focus on in this Letter. Of course, in gauge field theory the observables, or, more in general,
any physical claim, should not depend on the gauge choice, but in certain gauges some
physical properties might be more apparent than in others. We believe that this is the case
for the harmonic gauge in LMG. The theory of LG is obtained as a perturbation of General
Relativity (GR) around an arbitrary background metric g

(0)
µ⌫ [4]. For the scope of this paper

we will consider a Minkowskian background, i.e. g
(0)
µ⌫ = ⌘µ⌫ = diag (�1, 1, 1, 1), so that the

whole metric can be written as

gµ⌫(x) = ⌘µ⌫ + hµ⌫(x) , (1)

and, expanding the Einstein-Hilbert action
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Z
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x
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where h(x) ⌘ ⌘
µ⌫
hµ⌫(x). It is well known that (3) is the most general action describing

a rank-2 symmetric tensor in a Minkowski space-time and invariant under the infinitesimal
gauge transformation

hµ⌫ ! h
0
µ⌫

= hµ⌫ + @µ✓⌫ + @⌫✓µ , (4)

where ✓(x) is a local infinitesimal gauge parameter. As pointed out in [5, 6], when building an
action for a MG theory, it is necessary first to gauge fix the invariant massless action (3), and,
after that, a mass term might be added. We now briefly recall why this is the case. We remark
that even an intrinsically classic theory as linearized gravity needs a well defined generating
functional of the Green functions, without which, for instance, the propagator does not exist,
nor, consequently, the corresponding dynamical theory. Adding a mass term directly to the
invariant action (3), as done, for instance, in the Fierz-Pauli (FP) approach to MG [7], has
a few fundamental flaws. Firstly, the mass term plays the primary and inappropriate role
of gauge fixing the action, breaking the symmetry (4). In fact, the FP mass term allows
to define a propagator, but this trades the mass for a gauge fixing parameter, which is not
physical, in contrast with the fact that mass should be an observable quantity. Secondly,
the FP theory does not display a good massless limit since, at vanishing masses, one is left
with the invariant action Sinv[h] (3), which has no propagator for the symmetric tensor field
hµ⌫(x). Furthermore, the gravitational couplings predicted by the FP action in the massless
limit are inconsistent with those of GR. This fact is known as the vDVZ discontinuity [8, 9].
A striking e↵ect of the discontinuity is that, in the limit of small mass of the FP theory,
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which characterizes the five DOF of the theory. In Section 5 we show the absence of the

vDVZ discontinuity, for any gauge choice. Our results are summarized and discussed in the

concluding Section 6.

List of acronyms: DOF: Degree(s) of Freedom; EOM: Equation(s) of Motion; FP: Fierz-

Pauli; GR: General Relativity; LG: Linearized Gravity; LMG: Linearized Massive Gravity;

MG: Massive Gravity; vDVZ: van Dam, Veltman and Zacharov.

2 The massive action

The weak field expansion of GR around the flat Minkowskian background ⌘µ⌫ = diag(�1, 1, 1, 1)
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which characterizes the five DOF of the theory. In Section 5 we show the absence of the

vDVZ discontinuity, for any gauge choice. Our results are summarized and discussed in the

concluding Section 6.
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• Gauge symmetry


• Unique theory with this symmetry
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Uniqueness of GR
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Equivalence and CovarianceSpin-2

The Linearized Einstein-Hilbert Action
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Massive Gravity



MG: Why?

• Strong constraints on the mass

Cons:

Pros:

• Interesting modification


• Universe without Dark Energy
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MG: How?

Massless graviton Massive graviton
2 degrees of freedom 5 degrees of freedom


2S +1

General Relativity Massive Gravity
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Fierz-Pauli theory of MG



• Define the Action


• Find the EOMs


• Find the Propagator

Fierz-Pauli Theory



The Fierz-Pauli Action
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vDVZ discontinuity, for any gauge choice. Our results are summarized and discussed in the

concluding Section 6.
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The Equations of Motion

otherwise a sixth ghost mode with negative energy appears [20], and the theory does not

describe a massive graviton. The choice (2.5) is generally referred to as FP tuning, and the

FP theory is defined by the action

SFP [h;m
2
1] ⌘ SLG[h] + Sm[h;m

2
1,�m2

1] . (2.6)

Following [11], we now show that the theory described by the action SFP (2.6) does indeed

display five DOF. The Equations of Motion (EOM) obtained from (2.6) read
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Saturating (2.9) with ⌘µ⌫ we find

h = 0 , (2.10)

which, together with (2.8), implies

@µhµ⌫ = 0 . (2.11)

Therefore, the EOM (2.7) imply the following set of equations

(@2 �m2
1)hµ⌫(x) = 0 (2.12)

@µhµ⌫(x) = 0 (2.13)

h(x) = 0 . (2.14)

Eq. (2.12) is the Klein-Gordon equation for the field hµ⌫(x), while (2.13) and (2.14) rep-

resent five constraints (transversality and tracelessness) which reduce the ten independent

components of hµ⌫ to five. These five components carry the five massive DOF of the graviton.

2.2 Problems with the Fierz-Pauli theory

The propagator of the FP theory (2.6) is

GFP
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2
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6where Pµ⌫ is the transverse massive projector defined as

Pµ⌫ = ⌘µ⌫ +
pµp⌫
m2

1

. (2.16)

A crucial remark is that the propagator (2.15) exists only thanks to the presence of the mass

term (2.3) on the FP point (2.5). As a consequence of this fact, it is apparent from (2.16)

that the FP theory has a divergent massless limit. Moreover, the massless limit of the FP

theory is flawed by the vDVZ discontinuity [16, 17], which basically consists in the fact that

the correlator involving two energy-momentum tensors, computed in the FP theory in the

limit m2
1 ! 0, does not match the GR prediction. We sketch here the proof (for details

see [11, 18]). The gravitational interaction between two non relativistic energy-momentum

tensors T (1)
µ⌫ and T (2)

µ⌫ (which are conserved, i.e. p⌫T̃ (1)
µ⌫ = p⌫T̃ (2)

µ⌫ = 0) is described by the

introduction in the action of an interaction term of the type

Sint = �

Z
d4x hµ⌫T

µ⌫ , (2.17)

where Tµ⌫ denotes a generic energy-momentum tensor, coupled to hµ⌫(x) through a constant

�, which we call �LG and �FP for LG and FP theory, respectively. Therefore, the interaction

strength between T (1)
µ⌫ and T (2)

µ⌫ can be computed by contraction with the propagator of the

graviton. In LG, the propagator Gµ⌫,↵�
LG is obtained from the LG action (2.1) after a gauge

fixing, as done in [11]. The FP propagator Gµ⌫,↵�
FP , on the other hand, is given by (2.15).

In the non relativistic limit, only the 00-components of the energy-momentum tensors are

non negligible. Two cases are considered: in the first, T (1)
µ⌫ and T (2)

µ⌫ are associated with

massive objects and therefore have non vanishing trace. In the second case, T (1)
µ⌫ still has

a non vanishing trace whereas T (2)
µ⌫ is traceless, representing, for instance, electromagnetic

radiation (e.g. light). Concerning the first case, the interaction strength in LG is
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while, in the second, i.e. when T (2)
µ⌫ is traceless, we have
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On the other hand, the interaction strengths corresponding to (2.18) and (2.19) obtained

using the FP propagator (2.15), in the massless limit m1 ! 0 are, respectively
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↵� =
4
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and
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On the other hand, the interaction strengths corresponding to (2.18) and (2.19) obtained

using the FP propagator (2.15), in the massless limit m1 ! 0 are, respectively
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Case 1:

Case 2:

The Interactions
vDVZ discontinuity

where Pµ⌫ is the transverse massive projector defined as
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What is the origin of these flaws?

which characterizes the five DOF of the theory. In Section 5 we show the absence of the

vDVZ discontinuity, for any gauge choice. Our results are summarized and discussed in the

concluding Section 6.

List of acronyms: DOF: Degree(s) of Freedom; EOM: Equation(s) of Motion; FP: Fierz-

Pauli; GR: General Relativity; LG: Linearized Gravity; LMG: Linearized Massive Gravity;

MG: Massive Gravity; vDVZ: van Dam, Veltman and Zacharov.

2 The massive action

The weak field expansion of GR around the flat Minkowskian background ⌘µ⌫ = diag(�1, 1, 1, 1)

is given by the LG action
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d4x

h 1

2
h@2h � hµ⌫@

µ@⌫h � 1

2
hµ⌫@2hµ⌫ + hµ⌫@⌫@

⇢hµ⇢

i
, (2.1)

where hµ⌫(x) is a symmetric rank-2 tensor field representing the graviton, and h(x) ⌘ ⌘µ⌫hµ⌫(x)

is its trace. The action SLG[h] (2.1) is the most general functional invariant under the in-

finitesimal di↵eomorphism transformation

�hµ⌫(x) = @µ⇠⌫(x) + @⌫⇠µ(x) , (2.2)

where ⇠µ(x) is a local vector parameter. The transformation (2.2) represents the gauge

symmetry of the action SLG (2.1).

2.1 The Fierz-Pauli theory

The most general mass term which can be added to the invariant action SLG (2.1), respecting

Lorentz invariance and power counting, is

Sm[h;m
2
1,m

2
2] =

1

2

Z
d4x (m2

1hµ⌫h
µ⌫ +m2

2h
2) , (2.3)

where m2
1 and m2

2 are massive parameters. The presence of a mass term breaks the di↵eomor-

phism invariance (2.2), as usual in any gauge field theory. It can be shown (see for instance

[24]) that the action

S = SLG + Sm . (2.4)

describes the propagation of five DOF only if

m2
1 +m2

2 = 0 , (2.5)
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What is the origin of these flaws?
Mass as gauge-fixing

otherwise a sixth ghost mode with negative energy appears [20], and the theory does not

describe a massive graviton. The choice (2.5) is generally referred to as FP tuning, and the

FP theory is defined by the action

SFP [h;m
2
1] ⌘ SLG[h] + Sm[h;m

2
1,�m2

1] . (2.6)

Following [11], we now show that the theory described by the action SFP (2.6) does indeed

display five DOF. The Equations of Motion (EOM) obtained from (2.6) read

�SFP

�hµ⌫
= @2hµ⌫ � @↵@µh

↵
⌫ � @↵@⌫h

↵
µ + ⌘µ⌫@↵@�h

↵� + @µ@⌫h� ⌘µ⌫@
2h�m2

1(hµ⌫ � ⌘µ⌫h) = 0 ,

(2.7)

which, saturated with @µ, yield the constraint

@µhµ⌫ � @⌫h = 0 . (2.8)

Plugging (2.8) into (2.7) we get

@2hµ⌫ � @µ@⌫h�m2
1(hµ⌫ � ⌘µ⌫h) = 0 . (2.9)

Saturating (2.9) with ⌘µ⌫ we find

h = 0 , (2.10)

which, together with (2.8), implies

@µhµ⌫ = 0 . (2.11)

Therefore, the EOM (2.7) imply the following set of equations

(@2 �m2
1)hµ⌫(x) = 0 (2.12)

@µhµ⌫(x) = 0 (2.13)

h(x) = 0 . (2.14)

Eq. (2.12) is the Klein-Gordon equation for the field hµ⌫(x), while (2.13) and (2.14) rep-

resent five constraints (transversality and tracelessness) which reduce the ten independent

components of hµ⌫ to five. These five components carry the five massive DOF of the graviton.

2.2 Problems with the Fierz-Pauli theory

The propagator of the FP theory (2.6) is
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3
Pµ⌫P↵�

�
, (2.15)
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where k and  are gauge fixing parameters. The gauge fixed action then reads

S[h; k,] = Sinv[h] + Sgf [h; k,] , (8)

the ghost sector being factorized out since LG is an abelian gauge theory, and therefore the
ghosts are decoupled from the gauge field hµ⌫(x), as it happens in the Maxwell theory of
electromagnetism. As noticed, in LG the covariant gauge (6) is realized by means of two
gauge parameters: k and . The harmonic gauge (5), which is obtained from (6) by chosing
 = �1

2 , should therefore be thought of as a class of choices, rather than a particular one,
corresponding to generic k. We shall come again on this point later. In this Letter we are
interested in the particular k =  = �1
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fixed action
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where I is the rank-4 tensor identity

Iµ⌫,⇢� =
1

2
(⌘µ⇢⌘⌫� + ⌘µ�⌘⌫⇢) . (14)

The propagator G↵�,⇢�(p;m2
1,m

2
2) is defined by the following equation

⌦µ⌫

↵�
G↵�,⇢� = Iµ⌫,⇢� (15)

which gives

D
h̃µ⌫ h̃↵�

E
(p) = Gµ⌫,↵�(p;m

2
1,m

2
2) =

2

p2 +m
2
1


Iµ⌫,↵� �

1

2

p
2 � 2m2

2

p2 �m
2
1 � 4m2

2

⌘µ⌫⌘↵�

�
. (16)

Note that the propagator (16) displays a good massless limit (m1,m2 ! 0), as expected.
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which, by means of the usual Faddeev-Popov (�⇧) exponentiation [30], yields the gauge

fixing action term

Sgf [h; k,] = � 1
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. (2.32)

Notice that the gauge fixing term (2.32) depends on two gauge parameters k and , which

play di↵erent roles. In fact, k determines how the gauge fixing condition (2.31) is enforced. It

can be seen as a kind of primary gauge fixing parameter, which corresponds to the standard

gauge fixing parameter of Yang-Mills theory: k = 0 corresponds to the Landau gauge, for

instance. On the other hand, the parameter  fine-tunes the class of gauge fixing identified

by k. It plays a secondary role. As an example, the harmonic, or Lorenz, gauge is obtained

with the choice  = �1/2. Hence, it makes sense to talk about harmonic-Landau gauge, for

instance, meaning by that the choice k = 0 and  = �1/2. Once the action SLG[h] (2.1) has

been gauge fixed by the gauge fixing term (2.32), we can add the mass term (2.3), so that

our starting point for a theory of LMG is given by the action

SLMG = SLG + Sgf + Sm . (2.33)

The action (2.33) is the starting, rather than the arrival, point, because the road ahead of us

is still long. We have indeed to face the problems which a↵ect the FP theory: in particular

the massless limit and the absence of the vDVZ discontinuity. But, first, we have to deal with

the main feature of LMG: the five DOF which must characterize a spin-2 massive particle.

Our comparison is the FP theory, which reaches this goal with one mass parameter only,

because of the FP tuning (2.5). The action (2.33), instead, depends on two masses, for now.

This will be done in the next Section.

3 Degrees of freedom

A realistic theory of MG needs five propagating massive DOF. The easiest way to see this is

to notice that the massive graviton is a spin S = 2 particle, which displays 2S+1 independent

components. Hence, given that the graviton is described by a symmetric rank-2 tensor hµ⌫(x),

only five out of its ten components correspond to physical DOF. Therefore, a necessary

condition for a gauge theory of a massive rank-2 symmetric tensor to be promoted to a theory

of LMG is to recover the five linear equations represented by the constraints of tracelessness

(2.26) (or (2.14)) and of transversality (2.27) (or (2.13)), in order to lower the number

of independent components of hµ⌫(x) from ten to five. The realization of this necessary

condition, in the framework of a well defined gauge field theory of a symmetric rank-2 tensor,

is the main aim of this paper. To reach our goal, we shall now consider the EOM of the

action (2.33) and we shall manage to restrict the mass parameters m2
1 and m2

2 to the cases
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which characterizes the five DOF of the theory. In Section 5 we show the absence of the

vDVZ discontinuity, for any gauge choice. Our results are summarized and discussed in the

concluding Section 6.

List of acronyms: DOF: Degree(s) of Freedom; EOM: Equation(s) of Motion; FP: Fierz-

Pauli; GR: General Relativity; LG: Linearized Gravity; LMG: Linearized Massive Gravity;

MG: Massive Gravity; vDVZ: van Dam, Veltman and Zacharov.

2 The massive action

The weak field expansion of GR around the flat Minkowskian background ⌘µ⌫ = diag(�1, 1, 1, 1)

is given by the LG action

SLG[h] =

Z
d4x

h 1

2
h@2h � hµ⌫@

µ@⌫h � 1

2
hµ⌫@2hµ⌫ + hµ⌫@⌫@

⇢hµ⇢

i
, (2.1)

where hµ⌫(x) is a symmetric rank-2 tensor field representing the graviton, and h(x) ⌘ ⌘µ⌫hµ⌫(x)

is its trace. The action SLG[h] (2.1) is the most general functional invariant under the in-

finitesimal di↵eomorphism transformation

�hµ⌫(x) = @µ⇠⌫(x) + @⌫⇠µ(x) , (2.2)

where ⇠µ(x) is a local vector parameter. The transformation (2.2) represents the gauge

symmetry of the action SLG (2.1).

2.1 The Fierz-Pauli theory

The most general mass term which can be added to the invariant action SLG (2.1), respecting

Lorentz invariance and power counting, is

Sm[h;m
2
1,m

2
2] =

1

2

Z
d4x (m2

1hµ⌫h
µ⌫ +m2

2h
2) , (2.3)

where m2
1 and m2

2 are massive parameters. The presence of a mass term breaks the di↵eomor-

phism invariance (2.2), as usual in any gauge field theory. It can be shown (see for instance

[24]) that the action

S = SLG + Sm . (2.4)

describes the propagation of five DOF only if

m2
1 +m2

2 = 0 , (2.5)
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Breaking of symmetry: mass where k and  are gauge fixing parameters. The gauge fixed action then reads

S[h; k,] = Sinv[h] + Sgf [h; k,] , (8)

the ghost sector being factorized out since LG is an abelian gauge theory, and therefore the
ghosts are decoupled from the gauge field hµ⌫(x), as it happens in the Maxwell theory of
electromagnetism. As noticed, in LG the covariant gauge (6) is realized by means of two
gauge parameters: k and . The harmonic gauge (5), which is obtained from (6) by chosing
 = �1

2 , should therefore be thought of as a class of choices, rather than a particular one,
corresponding to generic k. We shall come again on this point later. In this Letter we are
interested in the particular k =  = �1

2 harmonic gauge, to which corresponds the gauge
fixed action

S[h; k =  = �1

2
] =

Z
d4x

h 1

4
h@

2
h � 1

2
h
µ⌫
@
2
hµ⌫

i
. (9)

The most general mass term which can be added to the action S is

Sm[h;m
2
1,m

2
2] =

Z
d4
x


1

2
m

2
1hµ⌫h

µ⌫ +
1

2
m

2
2h

2

�
, (10)

where m
2
1 and m

2
2 are massive parameters. The whole LMG action is therefore given by

SMG[h;m
2
1,m

2
2] = S[h; k =  = �1

2
] + Sm[h;m

2
1,m

2
2] . (11)

The action (11) in momentum space reads

SMG[h̃;m
2
1,m

2
2] =

Z
d4p h̃µ⌫(�p) ⌦µ⌫,↵�(p;m2

1,m
2
2) h̃↵�(p) , (12)

where h̃µ⌫(p) is the Fourier transform of hµ⌫(x), and the kinetic operator ⌦ is

⌦µ⌫,↵�(p;m
2
1,m

2
2) =

1

2

✓
m

2
2 �

1

2
p
2

◆
⌘µ⌫⌘↵� +

1

2
(p2 +m

2
1)Iµ⌫,↵� , (13)

where I is the rank-4 tensor identity

Iµ⌫,⇢� =
1

2
(⌘µ⇢⌘⌫� + ⌘µ�⌘⌫⇢) . (14)

The propagator G↵�,⇢�(p;m2
1,m

2
2) is defined by the following equation

⌦µ⌫

↵�
G↵�,⇢� = Iµ⌫,⇢� (15)

which gives

D
h̃µ⌫ h̃↵�

E
(p) = Gµ⌫,↵�(p;m

2
1,m

2
2) =

2

p2 +m
2
1


Iµ⌫,↵� �

1

2

p
2 � 2m2

2

p2 �m
2
1 � 4m2

2

⌘µ⌫⌘↵�

�
. (16)

Note that the propagator (16) displays a good massless limit (m1,m2 ! 0), as expected.
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Note that the propagator (16) displays a good massless limit (m1,m2 ! 0), as expected.
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Massless (well defined) action:

Linearized massive gravity action:
S[h] + Sgf [h; k, k1] (0.1)

SMG = Sinv[h] + Sgf [h; k,] + Sm[h;m
2
1,m

2
2] (0.2)

(@2 �m2
1)hµ⌫ = 0 (0.3)

(@2 �m2
1)hµ⌫(x) = 0 (0.4)

@µhµ⌫ = 0 (0.5)

h = 0 (0.6)

@µhµ⌫(x) = 0 (0.7)

h(x) = 0 (0.8)

V (r) ⇠ 1

r
e�↵mr (0.9)

SFP [h,m
2
1] = S[h] +

Z
d4x

1

2
m2

1(hµ⌫h
µ⌫ � h2) (0.10)

Pµ⌫ = ⌘µ⌫ +
pµp⌫
m2

1

(0.11)

Gµ⌫,↵� =
2

p2 +m2
1


1

2
(Pµ↵P⌫� + Pµ�P⌫↵)�

2

3
Pµ⌫P↵�

�
(0.12)

SMaxwell = �
Z

d4x
1

4
Fµ⌫F

µ⌫ (0.13)

�Aµ = @µ✓ (0.14)

�hµ⌫ = @µ⇠⌫ + @⌫⇠µ (0.15)

Sgf = �
Z

d4x
(@µAµ)2

2k
(0.16)

1
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r
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Z
d4x

1

2
m2

1(hµ⌫h
µ⌫ � h2) (0.10)

Pµ⌫ = ⌘µ⌫ +
pµp⌫
m2

1
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2
(Pµ↵P⌫� + Pµ�P⌫↵)�

2

3
Pµ⌫P↵�
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d4x
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The Equations of Motion 
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1

in which we can find enough constraints to ensure the propagation of five massive DOF.

Moreover, in order to deal with a physically consistent theory, we must also require that

the propagating DOF do not depend on the gauge parameters k and , allowing instead, of

course, a dependence on the mass parameters m2
1 and m2

2.

The action SLMG (2.33) in momentum space reads:

SLMG =

Z
d4p h̃µ⌫ ⌦µ⌫,↵� h̃↵� , (3.1)

where the kinetic operator ⌦ is

⌦µ⌫,↵� =
1

2


m2

2 �
✓
1 +

2

k

◆
p2
�
⌘µ⌫⌘↵� +

1

2

⇣
1� 

k

⌘
(⌘µ⌫e↵� + ⌘↵�eµ⌫) p

2+

1

2
(p2 +m2

1)Iµ⌫,↵� �
1

4

✓
1 +

1

2k

◆
(eµ↵⌘⌫� + e⌫↵⌘µ� + eµ�⌘⌫↵ + e⌫�⌘µ↵) p

2 , (3.2)

I is the rank-4 tensor identity

Iµ⌫,⇢� =
1

2
(⌘µ⇢⌘⌫� + ⌘µ�⌘⌫⇢) (3.3)

and eµ⌫ is the transverse projector

eµ⌫ =
pµp⌫
p2

. (3.4)

From the action SLMG (3.1) we get the momentum space EOM

�S

�h̃µ⌫

= �
✓
1 +

2

k

◆
⌘µ⌫p2h̃ +

⇣
1� 

k

⌘
pµp⌫ h̃ +

⇣
1� 

k

⌘
⌘µ⌫p↵p�h̃↵�

+ p2h̃µ⌫ �
✓
1 +

1

2k

◆�
pµp↵h̃⌫

↵ + p⌫p↵h̃µ
↵

�
+ m2

1 h̃
µ⌫ +m2

2 ⌘
µ⌫ h̃ = 0 . (3.5)

In order to study the propagating DOF, we saturate the EOM (3.5) with ⌘µ⌫ and eµ⌫ (3.4),

to get

⌘µ⌫ :
h
(m2

1 + 4m2
2)�

⇣
2 +



k
(1 + 4)

⌘
p2
i
h̃ +

✓
2� 1

k
(1 + 4)

◆
p2 eµ⌫ h̃

µ⌫ = 0 (3.6)

eµ⌫ :
h
m2

2 �


k
(1 + )p2

i
h̃ +


m2

1 �
1

k
(1 + )p2

�
eµ⌫ h̃

µ⌫ = 0 . (3.7)

From these two equations we deduce that, if m2
1 6= 0 (we will consider the case m2

1 = 0 later),

the only solution is 8
><

>:

h̃ = 0

eµ⌫ h̃µ⌫ = 0 ,

(3.8)

(3.9)
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since (3.6) and (3.7) form a homogeneous system of two linear equations which has a non

trivial solution only if the determinant of the coe�cients matrix vanishes. For m2
1 6= 0 this

determinant cannot vanish, independently of the choice of , k and m2
2. Substituting (3.8)

and (3.9) into the EOM (3.5) we get

(p2 +m2
1)h̃µ⌫ �

✓
1 +

1

2k

◆⇣
pµp

↵h̃⌫↵ + p⌫p
↵h̃µ↵

⌘
= 0 , (3.10)

which, saturated with p⌫ and using again (3.9), yields

✓
m2

1 �
1

2k
p2
◆
p⌫ h̃µ⌫ = 0 . (3.11)

The above equation is satisfied if

p2 = 2km2
1 (3.12)

or

p⌫ h̃µ⌫ = 0 , (3.13)

but the requirement that the physical masses should not depend on the gauge parameters,

implies that the only allowable solution of (3.11) is (3.13). This, together with (3.8), gives

the five constraints 8
><

>:

h̃ = 0

pµh̃µ⌫ = 0 ,

(3.14)

(3.15)

which ensure the propagation of five DOF. Conditions (3.14) and (3.15) inserted into the

EOM (3.5) give the massive propagation of hµ⌫

(p2 +m2
1)h̃µ⌫ = 0 , (3.16)

which, interestingly, does not depend on the mass parameter m2. If, on the other hand,

m2
1 = 0, the two equations (3.6) and (3.7) have non trivial solutions only if

 = �1 ; k = �3

2
, (3.17)

which, plugged back into (3.6) and (3.7) with m2
1 = 0, yield

h = 0 . (3.18)

Substituting m2
1 = 0 and h = 0 in the EOM (3.5) we notice that all the dependence on the

mass parameters vanishes. The resulting EOM would therefore describe the propagation of

a massless field or, alternatively, the propagation of a field with a mass dependent on the

12

5 DOFs
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gauge parameters k and . Both cases do not represent acceptable descriptions of a LMG

theory, therefore we conclude that it must be

m2
1 6= 0 . (3.19)

To summarize, we showed that the gauge fixed action SLMG (2.33), with the mass term Sm

(2.3), displays five DOF, provided that m2
1 6= 0, for any value of m2

2 and for arbitrary gauge

parameters k and .

4 Propagators

The momentum space propagator Gµ⌫,↵�(p) is defined by the condition

⌦µ⌫
↵�G↵�,⇢� = Iµ⌫,⇢� , (4.1)

where ⌦µ⌫,↵�(p) is the kinetic operator introduced in (3.2) and Iµ⌫,⇢� is the rank-4 tensor

identity (3.3). In order to find Gµ⌫,↵�(p) it is convenient to introduce the rank-2 projectors

eµ⌫ (3.4) and

dµ⌫ ⌘ ⌘µ⌫ � eµ⌫ (4.2)

which are idempotent and orthogonal

eµ�e
�
µ = eµ⌫ , dµ�d

�
⌫ = dµ⌫ , eµ�d

�
⌫ = 0 . (4.3)

With these rank-2 projectors we can construct a basis formed by five rank-4 tensors which

we collectively denote

Xµ⌫,↵� ⌘ (A,B,C,D,E)µ⌫,↵� (4.4)

with the symmetry properties

Xµ⌫,↵� = X⌫µ,↵� = Xµ⌫,�↵ = X↵�,µ⌫ . (4.5)
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2 . (4.22)

Similarly, we can expand the propagator Gµ⌫,↵�(p) :

Gµ⌫,↵� = t̂Aµ⌫,↵� + ûBµ⌫,↵� + v̂Cµ⌫,↵� + ẑDµ⌫,↵� + ŵEµ⌫,↵� , (4.23)

where t̂, û, v̂, ẑ and ŵ are functions of the momentum p and depend on the gauge parameters

k and  appearing in Sgf (2.32) and on the masses m2
1 and m2

2 of the mass term Sm (2.3).

Solving the defining equation (4.1), we find :

t̂ =
2(1 + )(1 + 4)p2 � 2k(m2

1 + 4m2
2)

DN(m1,m2, k,, p2)
(4.24)

û =
2
⇥
(1 + 4) + 2k

⇤
p2 � 2k(m2

1 + 4m2
2)

DN(m1,m2, k,, p2)
(4.25)

v̂ =
2

p2 +m2
1

(4.26)

ẑ =
�4k

p2 � 2km2
1

(4.27)

ŵ =
8km2

2 � 8(1 + )p2

DN(m1,m2, k,, p2)
, (4.28)

where we used the shorthand notation for the denominator

DN(m1,m2, k,, p
2) ⌘

� 2(1 + )2p4 +
h
(1 + 2+ 42 + 2k)m2

1 + (3 + 2k)m2
2

i
p2 � 4km2

1m
2
2 � km4

1 . (4.29)

The propagator (4.23) displays poles that depend on the gauge parameters k and  and

might even be tachyonic. This does not come as a surprise, given that the theory describes

15
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the dynamics of a rank-2 symmetric tensor field, and the pole structure of its propagator is

more complicated than the usual scalar, spinor or vector cases. Neither it should be seen as a

problem, since in the previous Section we proved that only five of the ten components of hµ⌫

represent independent DOF, which satisfy the massive wave equation of the Klein-Gordon

type (3.16) which depends on the mass m2
1 only, in agreement with the FP theory. Hence,

looking at the whole propagator is neither helpful nor correct in order to identify the physical

pole in this case, since we may allow for non physical poles located in non physical sectors

of the propagator. Rather, what should be done in order to select the physical pole, is to

look to the observables related to the propagator (4.23). An important example is the one

already considered in the analysis of the vDVZ discontinuity: the scattering amplitude of

light and a massive object, mediated by the gravitational interaction, which is responsible

for the observed time delay in gravitational lensing. Formally, this observable can be traced

back to the more general interaction amplitude of two conserved energy-momentum tensors

T (1)
µ⌫ and T (2)

µ⌫ , of which the one corresponding to light (which in the following we choose to

be T (2)
µ⌫ ) is traceless :

T̃ (1)
µ⌫ G

µ⌫,↵�T̃ (2)
↵� . (4.30)

Substituting the propagator (4.23) into (4.30), we get

T̃ (1)
µ⌫

⇣
t̂Aµ⌫,↵� + ûBµ⌫,↵� + v̂Cµ⌫,↵� + ẑDµ⌫,↵� + ŵEµ⌫,↵�

⌘
T̃ (2)
↵� . (4.31)

The above expression contains contractions of the tensor projectors (4.6)-(4.10) with T̃ (1)
µ⌫

and T̃ (2)
µ⌫ . These are greatly simplified thanks to the fact that the energy-momentum tensors

are conserved: p⌫T̃ (1)
µ⌫ = p⌫T̃ (2)

µ⌫ = 0. In particular:

T̃ (1)
µ⌫ A

µ⌫,↵�T̃ (2)
↵� =

1

3
T̃ (1)
µ⌫ ⌘

µ⌫⌘↵�T̃ (2)
↵� (4.32)

T̃ (1)
µ⌫ B

µ⌫,↵�T̃ (2)
↵� = 0 (4.33)

T̃ (1)
µ⌫ C

µ⌫,↵�T̃ (2)
↵� =

1

2
T̃ (1)
µ⌫ (⌘

µ↵⌘⌫� + ⌘µ�⌘⌫↵ � 2

3
⌘µ⌫⌘↵�)T̃ (2)

↵� (4.34)

T̃ (1)
µ⌫ D

µ⌫,↵�T̃ (2)
↵� = 0 (4.35)

T̃ (1)
µ⌫ E

µ⌫,↵�T̃ (2)
↵� =

1

4
T̃ (1)
µ⌫ ⌘

µ⌫⌘↵�T̃ (2)
↵� . (4.36)

Eqs. (4.32)-(4.36) can be further simplified by using the fact that T̃ (2)
µ⌫ is traceless (⌘µ⌫T̃ (2)

µ⌫ =

0), which means that the only non-vanishing contraction left is

T̃ (1)
µ⌫ C

µ⌫,↵�T̃ (2)
↵� =

1

2
T̃ (1)
µ⌫ (⌘

µ↵⌘⌫� + ⌘µ�⌘⌫↵)T̃ (2)
↵� . (4.37)
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• Gauge independent
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v =
1
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1

2
m2

1 (4.21)

w = �2

k
(1 + )p2 + 2m2

2 . (4.22)

Similarly, we can expand the propagator Gµ⌫,↵�(p) :

Gµ⌫,↵� = t̂Aµ⌫,↵� + ûBµ⌫,↵� + v̂Cµ⌫,↵� + ẑDµ⌫,↵� + ŵEµ⌫,↵� , (4.23)

where t̂, û, v̂, ẑ and ŵ are functions of the momentum p and depend on the gauge parameters

k and  appearing in Sgf (2.32) and on the masses m2
1 and m2

2 of the mass term Sm (2.3).

Solving the defining equation (4.1), we find :

t̂ =
2(1 + )(1 + 4)p2 � 2k(m2

1 + 4m2
2)

DN(m1,m2, k,, p2)
(4.24)

û =
2
⇥
(1 + 4) + 2k

⇤
p2 � 2k(m2

1 + 4m2
2)

DN(m1,m2, k,, p2)
(4.25)

v̂ =
2

p2 +m2
1

(4.26)

ẑ =
�4k

p2 � 2km2
1

(4.27)

ŵ =
8km2

2 � 8(1 + )p2

DN(m1,m2, k,, p2)
, (4.28)

where we used the shorthand notation for the denominator

DN(m1,m2, k,, p
2) ⌘

� 2(1 + )2p4 +
h
(1 + 2+ 42 + 2k)m2

1 + (3 + 2k)m2
2

i
p2 � 4km2

1m
2
2 � km4

1 . (4.29)

The propagator (4.23) displays poles that depend on the gauge parameters k and  and

might even be tachyonic. This does not come as a surprise, given that the theory describes
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otherwise a sixth ghost mode with negative energy appears [20], and the theory does not

describe a massive graviton. The choice (2.5) is generally referred to as FP tuning, and the

FP theory is defined by the action

SFP [h;m
2
1] ⌘ SLG[h] + Sm[h;m

2
1,�m2

1] . (2.6)

Following [11], we now show that the theory described by the action SFP (2.6) does indeed

display five DOF. The Equations of Motion (EOM) obtained from (2.6) read

�SFP

�hµ⌫
= @2hµ⌫ � @↵@µh

↵
⌫ � @↵@⌫h

↵
µ + ⌘µ⌫@↵@�h

↵� + @µ@⌫h� ⌘µ⌫@
2h�m2

1(hµ⌫ � ⌘µ⌫h) = 0 ,

(2.7)

which, saturated with @µ, yield the constraint

@µhµ⌫ � @⌫h = 0 . (2.8)

Plugging (2.8) into (2.7) we get

@2hµ⌫ � @µ@⌫h�m2
1(hµ⌫ � ⌘µ⌫h) = 0 . (2.9)

Saturating (2.9) with ⌘µ⌫ we find

h = 0 , (2.10)

which, together with (2.8), implies

@µhµ⌫ = 0 . (2.11)

Therefore, the EOM (2.7) imply the following set of equations

(@2 �m2
1)hµ⌫(x) = 0 (2.12)

@µhµ⌫(x) = 0 (2.13)

h(x) = 0 . (2.14)

Eq. (2.12) is the Klein-Gordon equation for the field hµ⌫(x), while (2.13) and (2.14) rep-

resent five constraints (transversality and tracelessness) which reduce the ten independent

components of hµ⌫ to five. These five components carry the five massive DOF of the graviton.

2.2 Problems with the Fierz-Pauli theory

The propagator of the FP theory (2.6) is

GFP
µ⌫,↵�(p) =

2

p2 +m2
1


1

2
(Pµ↵P⌫� + P⌫↵Pµ�)�

1

3
Pµ⌫P↵�

�
, (2.15)
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1

• A gauge independent mass-mass interaction


•BRS formulation of the theory


•Quantum extension

Still missing: 
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The basis tensors
In terms of the projectors eµ⌫ and dµ⌫ the operators Xµ⌫,↵� read

Aµ⌫,↵� =
dµ⌫d↵�

3
(4.6)

Bµ⌫,↵� = eµ⌫e↵� (4.7)

Cµ⌫,↵� =
1

2

✓
dµ↵d⌫� + dµ�d⌫↵ � 2

3
dµ⌫d↵�

◆
(4.8)

Dµ⌫,↵� =
1

2
(dµ↵e⌫� + dµ�e⌫↵ + eµ↵d⌫� + eµ�d⌫↵) (4.9)

Eµ⌫,↵� =
⌘µ⌫⌘↵�

4
, (4.10)

and have the following properties:

• decomposition of the identity Iµ⌫,↵� (3.3) :

Aµ⌫,↵� +Bµ⌫,↵� + Cµ⌫,↵� +Dµ⌫,↵� = Iµ⌫,↵� ; (4.11)

• idempotency :

X ⇢�
µ⌫ X⇢�,↵� = Xµ⌫,↵� ; (4.12)

• orthogonality of A, B, C and D :

Xµ⌫,↵�X
0↵�

⇢� = 0 if (X,X 0) 6= E and X 6= X 0 ; (4.13)

• contractions with E :

Aµ⌫,↵�E
↵�

⇢� =
dµ⌫⌘⇢�

4
(4.14)

Bµ⌫,↵�E
↵�

⇢� =
eµ⌫⌘⇢�

4
(4.15)

Cµ⌫,↵�E
↵�

⇢� = Dµ⌫,↵�E
↵�

⇢� = 0 . (4.16)

The kinetic operator ⌦µ⌫,↵�(p) (3.2) can be written in terms of the rank-4 projectors (4.6)-

(4.10) :

⌦µ⌫,↵� = tAµ⌫,↵� + uBµ⌫,↵� + vCµ⌫,↵� + zDµ⌫,↵� + wEµ⌫,↵� , (4.17)

where, after a lenghty but straightforward calculation, the coe�cients are given by
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The massive propagator

Gµ⌫ =
1

p2


gµ⌫ � (1� k)

pµp⌫

p2

�
(0.17)
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p2
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k

p2
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2 e
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3
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3
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The massive graviton propagator

the dynamics of a rank-2 symmetric tensor field, and the pole structure of its propagator is

more complicated than the usual scalar, spinor or vector cases. Neither it should be seen as a

problem, since in the previous Section we proved that only five of the ten components of hµ⌫

represent independent DOF, which satisfy the massive wave equation of the Klein-Gordon

type (3.16) which depends on the mass m2
1 only, in agreement with the FP theory. Hence,

looking at the whole propagator is neither helpful nor correct in order to identify the physical

pole in this case, since we may allow for non physical poles located in non physical sectors

of the propagator. Rather, what should be done in order to select the physical pole, is to

look to the observables related to the propagator (4.23). An important example is the one

already considered in the analysis of the vDVZ discontinuity: the scattering amplitude of

light and a massive object, mediated by the gravitational interaction, which is responsible

for the observed time delay in gravitational lensing. Formally, this observable can be traced

back to the more general interaction amplitude of two conserved energy-momentum tensors

T (1)
µ⌫ and T (2)

µ⌫ , of which the one corresponding to light (which in the following we choose to

be T (2)
µ⌫ ) is traceless :

T̃ (1)
µ⌫ G

µ⌫,↵�T̃ (2)
↵� . (4.30)

Substituting the propagator (4.23) into (4.30), we get

T̃ (1)
µ⌫

⇣
t̂Aµ⌫,↵� + ûBµ⌫,↵� + v̂Cµ⌫,↵� + ẑDµ⌫,↵� + ŵEµ⌫,↵�

⌘
T̃ (2)
↵� . (4.31)

The above expression contains contractions of the tensor projectors (4.6)-(4.10) with T̃ (1)
µ⌫

and T̃ (2)
µ⌫ . These are greatly simplified thanks to the fact that the energy-momentum tensors

are conserved: p⌫T̃ (1)
µ⌫ = p⌫T̃ (2)

µ⌫ = 0. In particular:

T̃ (1)
µ⌫ A

µ⌫,↵�T̃ (2)
↵� =

1

3
T̃ (1)
µ⌫ ⌘

µ⌫⌘↵�T̃ (2)
↵� (4.32)

T̃ (1)
µ⌫ B

µ⌫,↵�T̃ (2)
↵� = 0 (4.33)

T̃ (1)
µ⌫ C

µ⌫,↵�T̃ (2)
↵� =

1

2
T̃ (1)
µ⌫ (⌘

µ↵⌘⌫� + ⌘µ�⌘⌫↵ � 2

3
⌘µ⌫⌘↵�)T̃ (2)

↵� (4.34)

T̃ (1)
µ⌫ D

µ⌫,↵�T̃ (2)
↵� = 0 (4.35)

T̃ (1)
µ⌫ E

µ⌫,↵�T̃ (2)
↵� =

1

4
T̃ (1)
µ⌫ ⌘

µ⌫⌘↵�T̃ (2)
↵� . (4.36)

Eqs. (4.32)-(4.36) can be further simplified by using the fact that T̃ (2)
µ⌫ is traceless (⌘µ⌫T̃ (2)

µ⌫ =

0), which means that the only non-vanishing contraction left is

T̃ (1)
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T̃ (1)
µ⌫ (⌘

µ↵⌘⌫� + ⌘µ�⌘⌫↵)T̃ (2)
↵� . (4.37)
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problem, since in the previous Section we proved that only five of the ten components of hµ⌫

represent independent DOF, which satisfy the massive wave equation of the Klein-Gordon

type (3.16) which depends on the mass m2
1 only, in agreement with the FP theory. Hence,

looking at the whole propagator is neither helpful nor correct in order to identify the physical

pole in this case, since we may allow for non physical poles located in non physical sectors

of the propagator. Rather, what should be done in order to select the physical pole, is to

look to the observables related to the propagator (4.23). An important example is the one

already considered in the analysis of the vDVZ discontinuity: the scattering amplitude of
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for the observed time delay in gravitational lensing. Formally, this observable can be traced
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