Study of mitigation strategies of beam induced background and Higgs boson couplings measurements at a muon collider

Laura Buonincontri

Università degli Studi di Padova

November 17, 2020

- Measurements of Higgs couplings to bosons and fermions at LHC are in agreement with SM
- Higgs potential shape is still far from being tested

$$V = \frac{1}{2}m_h^2 h^2 + \frac{\lambda_3}{2}vh^3 + \frac{\lambda_4}{4}h^4$$
 $\lambda_3^{SM} = \lambda_4^{SM} = \frac{m_H^2}{2v^2} \sim 0.13$

- Direct measurement of λ_3 , λ_4 are not possible at LHC (low production cross section), but are mandatory to tests the Higgs mechanism
- Precision achievable at Future Colliders is not sufficient to resolve Higgs boson potential

Advantages:

- muons are elementary particles
- synchrotron radiation and beamsstrahlung radiation are negligible
- \Rightarrow multi-TeV center of mass energy can be reached
- \Rightarrow high rates of H, HH, HHH
 - In my thesis: demonstration that $\mu^+\mu^- \rightarrow HH\nu\bar{\nu} \rightarrow b\bar{b}b\bar{b}\nu\bar{\nu}$ (BR($H \rightarrow b\bar{b}$) = 58%) at \sqrt{s} = 3 TeV can be reconstructed.
 - \bullet I evaluated the sensitivity on the HH production cross section, first step for the evaluation sensitivity on λ_3

Challenges

- Quick acceleration
- Muons decay! For a 0.75 TeV muon bunch of $2 \cdot 10^{12}$ muons, $\lambda_D = 4.7 \cdot 10^6 m \Rightarrow 4.28 \cdot 10^5$ decays/m

•
$$\mu^{\pm} \rightarrow e^{\pm} + \stackrel{(-)}{\nu}$$

- Interactions with surrounding machine: photons, neutrons or hadrons
- Beam-induced background (BIB) reduction: tungsten nozzles

Detector description

Beam-induced background characteristics

From studies of BIB at \sqrt{s} =1.5 TeV reaching the detector:

- Mostly photons (94%) and neutrons (4%), followed by electrons/positrons, charged hadrons and muons
- Spread in time with respect to the bunch crossing time

BIB reduction on detector components

- Large number of hits released by the beam-induced background particles in the innermost layers of the tracking system and vertex detector.
- Tuning of acquisition time window to reject hits released by BIB outside it.

Figure: Tracker

Effects of BIB on track reconstruction

Track reconstruction compared for prompt muons with and w/o BIB

Double Higgs analysis

The presence of BIB worsen the b tagging efficiency:

- the *b*-tagging algorithm tuned to keep the BIB effects (fake secondary vertices) to negligible level
- \bullet b-tagging efficiency with BIB \sim 60% with a mis-tag <1% at 1.5 TeV (see 2020 JINST 15 P05001)

Physics background considered: inclusive $\mu^+\mu^- \rightarrow b\bar{b}b\bar{b}\nu\bar{\nu}$:

- processes with jets in the final states different from the *b* quark negligible (one jet for each pair is required to be tagged)
- other physics background processes have very low cross section

Signal and background generated with WHIZARD Monte Carlo:

- event selection: N_{jets}>3, p_T > 20 GeV, jets paired minimizing distance from Higgs mass
- selection of the kinematic variables for classification $(m_{H_1}, m_{H_2}, \sum E_{jets}, \sum \vec{P}_T, \theta_{max})$

- Classification with Boosted Decision Tree (BDT)
- The sensitivity on the cross section is calculated by counting the number of signal (S) and background (B) events surviving cuts:

$$\frac{\Delta\sigma}{\sigma} = \frac{\sqrt{S+B}}{S} \begin{vmatrix} S = \sigma_{HH} \cdot BR(H \to b\bar{b})^2 \cdot L \cdot \epsilon_S \\ B = \sigma_{b\bar{b}b\bar{b}\nu\bar{\nu}} \cdot L \cdot \epsilon_B \end{vmatrix}$$

• σ_{HH} and $\sigma_{b\bar{b}b\bar{b}\nu\bar{\nu}}$ signal background cross section, ϵ_S and ϵ_B the selection efficiencies, $L = 1.3 \ ab^{-1} = 4.4 \cdot 10^{34} \ cm^{-2}s^{-1} \ \cdot 4 \cdot 10^7 \ s$

- In my master's thesis I demonstrated with a full simulation that it is possible to reconstruct $\mu^+\mu^- \rightarrow HH\nu\bar{\nu} \rightarrow b\bar{b}b\bar{b}\nu\bar{\nu}$ process at $\sqrt{s} = 3$ TeV taking into account the effect of the beam-induced background
- $\bullet\,$ My result is a sensitivity on the HH production cross section of $35\%\,$
- In these month I am working to conclude the analysis and publish the results in a paper.

Tracker Detector

Vertex detector

- 4 double-sensor barrel layers $25 \times 25 \mu m^2$
- 4+4 double-sensor disks "

Inner tracker detector

- 3 barrel layers $50 \times 50 \mu m^2$
- 7+7 disks "

Outer tracker detector

- 4 double-sensor barrel layers $25 \times 25 \mu m^2$
- 4+4 double-sensor disks "

BIB characteristics

From studies of beam-induced background at \sqrt{s} =1.5 TeV reaching the MDI surface:

• Relatively soft momenta: $< p_{ph.} >= 1.7 \text{ MeV},$ $< p_{el.} >= 6.4 \text{ MeV}, < p_{n.} >= 477 \text{ MeV},$ $\text{MeV}, < p_{ch.had.} >= 481 \text{ MeV},$ higher for muons.

BIB reduction on tracker

Effects of beam-induced background on calorimeter

Track parameters

Track parameters

Track parameters

With the introduction of the Higgs field, the full electroweak Standard Model lagrangian is then:

$$\begin{aligned} \mathcal{L} &= -\frac{1}{4} W_{\mu\nu} W^{\mu\nu} - \frac{1}{4} B_{\mu\nu} B^{\mu\nu} \\ &+ \bar{L} \gamma^{\mu} \left(i \partial_{\mu} - g \frac{1}{2} \tau W_{\mu} - g' \frac{Y}{2} B_{\mu} \right) L \\ \bar{R} \left(i \partial_{\mu} - g' \frac{Y}{2} B_{\mu} \right) R \\ &+ \left| \left(i \partial_{\mu} - g \frac{1}{2} \tau W_{\mu} - g' \frac{Y}{2} B_{\mu} \right) \phi \right|^2 - V(\phi) \\ &- G_i (\bar{L} \phi R + \bar{R} \phi L) \end{aligned}$$

 W^{\pm} ,Z γ kinetic energies and self-interacions

lepton and quark kinetic energies and interactions with W^{\pm} ,Z, γ

 W^{\pm} ,Z and Higgs masses and couplings

lepton and quark masses and couplings to Higgs

Higgs potential

- CLIC with 5 ab^{-1} at $\sqrt{s} = 3$ TeV can measure λ_3 with an uncertainty of -7% and +11% using HH events (arXiv:1901.05897v2).
- Sensitivity of FCC-hh to the measurement of λ₄ using HHH events, after full operations: -2 < λ₄/λ₄SM < +13 at 68% CL (arXiv:1909.09166).

- At multi-TeV, a muon collider is basically a W^+W^- collider: high yields of single H, HH and HHH events.
- Sensitivity of MC at 10 ab⁻¹ and \sqrt{s} =10 TeV to the measurement of λ_3 : 5.6%.
- Sensitivity of MC at 14 TeV with 33 ab^{-1} to the measurement of λ_4 : 50%.

Some considerations:

- analysis performed not in the presence of BIB, as not available at $\sqrt{s}=3$ TeV;
- Previous studies at \sqrt{s} = 1.5 TeV are used to take into account for BIB.

Effects of beam-induced background on jet reconstruction and *b*-tagging studied at \sqrt{s} =1.5 TeV in 2020 JINST 15 P05001:

- jet reconstruction and *b*-tagging algorithms optimized for beam-induced background reduction;
- reconstruction of $\sim 25\%$ fake jets;
- fake secondary vertices: $\sim 1\%$ of mis-tag.

b-tagging efficiencies have been used for the analysis of the double Higgs at $\sqrt{s}=3$ TeV. Conservative assumptions:

- amount of beam-induced background particles decreases as the center of mass energy increases;
- nozzles angles lower at \sqrt{s} =3 TeV;
- negligible fake jet rate is assumed since the Particle Flow algorithm is used at $\sqrt{s}=3$ TeV.

Studies of double Higgs

• Jets paired by minimizing:

$$\sqrt{(m_{ij}-m_H)^2+(m_{kl}-m_H)^2}$$

