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Hydrodynamic electron fluid

Can this eventually be true?



Electric conduction versus water flow

• Resistance arises through
external scattering due to
the lattice (impurities,
phonons,...)

• Resistance arises through
internal scattering
(viscosity)



“More is different” [Anderson ‘72]



Conventional metallic transport [Drude 1900]



Landau’s Fermi liquid theory [Landau ’56]

• Electrons in solids organize themselves into a ground state
characterized by a Fermi surface

• Excitations around the Fermi surface are weakly interacting
collective modes called quasi-particles

• Quasi-particles are long-lived and determine the transport
properties in normal metals

There are systems in which this is not true.... Hydrodynamics
might help....



Hydrodynamics

• Hydridynamics is an EFT in which the fundamental DOFs are
conserved quantities: momentum, energy, charge,...

• Works at length/time scales much larger than the microscopic
ones

• At strong coupling with no well defined quasi-particles is the
only suitable EFT



Hydrodynamics as an EFT

• At large length and time scales, only a small number of DOFs
survive to become hydrodynamic modes
I If no spontaneously broken symmetries: (almost)-conserved

currents.

• EOMS are determined by symmetries. Eg in a the relativistic
charged fluid there are two conserved currents:

∂µJ
µ = 0, ∂µT

µν = 0

• Local thermal equilibrium: everything is function of µ(x),
T (x) and uµ(x) ⇒ gradients expansion:

Jµ = nuµ +O(∂), Tµν = (n + p)uµuν − pgµν +O(∂)

Eventually one solves the EOMs order by order to find the relevant
observables



The prehistory of electron hydrodynamics

• Hydrodynamic effects in solids at low temperature, R. N.
Gurzhi, Usp. Fiz. Nauk. 94, 689 [Sov Phys Usp (1968)]

• Two-fluid hydrodynamic description of ordered systems,
C. P. Enz, RMP (1974)

• Electronfluid model for dc size effect, R. Jaggi, J. Appl.
Phys. (1991), Helvetica Physica Acta (1989); ibid (1980)

• Hydrodynamic electron flow in high-mobility wires, M. J.
M. de Jong and L. W. Molenkamp, PRB (1995)



Electronfluid model for dc size effect [Jaggi]



Electronfluid model for dc size effect [Jaggi]



Holography and hydrodynamic revival

[Kovtun, Son, Starinets, PRL 2005]

• Shear viscosity bound

η

s
≥ 1

4π

~
kB

• Class of strongly interacting
QFTs with gravity dual
saturate this bound

• Empirical evidence: first in
QGP and then in other
materials (Dirac Materials,
Graphene, Cuprates,
Kagome...)

• The more the system is
strongly coupled the more
the bound is saturated



Intense theoretical effort in the last decade...

• Magneto-transport with momentum dissipation in holography
and hydrodynamics [Davison,Hartnoll, Sachdev, Kiritsis,
Goutéraux, Baggioli, Donos Gauntlett, Pantelidou, Musso
Arean, Lucas, Andrade, Krikun, Schalm, Zaanen, Amoretti,
Musso, Pujolas, Kovtun] and many mores....

• Hydrodynamics in Dirac Materials (Graphene, Kagome)
[Lucas, Sachdev, Erdmenger, Meyers...]

• Anomalous hydrodynamics, holography and Weyl semi-metals
[Landsteiner, Abbasi....]

• Holography and hydrodynamics with spontaneously broken
symmetries Baggioli, Pujolas, Krikun, Andrade, Poovuttikul,
Amoretti, Musso, Arean, Goutéraux, Delacretaz, Karlson,
Hartnoll, Armas, Jain...]

• Holography in turbulent systems [Pantelidou, Andrade,
Krikun, Baggioli....]



Followed by experiments...

• Evidence for hydrodynamic electron flow in PdCoO2,
Moll et al. Science (2016)

• Negative local resistance due to viscous electron
backflow in graphene, Baudurin et al., Science (2016)

• Observation of the Dirac fluid and the breakdown of the
Wiedemann-Franz law in graphene, Crossno et al., Science
(2016)

• Thermal and electrical signatures of a hydrodynamic
electron fluid in tungsten diphosphide, Gooth et al.,
Nature Comm. (2018)

• Scanning gate microscopy in a viscous electron fluid,
Braem et al., PRB (2018)

• Ballistic and hydrodynamic magnetotransport in narrow
channels, Holder et al., PRB (2019)



Cuprates

• Layers of CuO2 planes
bounded by rare earths

• Superconductivity and the
most part of exotic
properties happen on the
CuO2 plane → 2D materials

• Universal properties despite
many different compounds

• Among High-Tc

superconductors Bi-2201
has a relatively low critical
temperature even at
optimal doping ⇒ ideal to
test low T properties of the
normal phase



Cuprates phase diagram

• Cuprates have almost the same Temperature vs doping
(concentration of rare earth) phase diagram, characterized by
many intertwined phases appearing at the same time.



Phase diagram, QCP and scaling laws

• QCP is supposed to affect the properties of the strange metal
phase:
I transport coefficients should assume simple scaling laws
I Strong coupling: no well defined quasi-particles.



The Resistivity and Hall angle issue

• In normal Fermi liquid (magnetic field perpendicular to CuO2

planes)

ρxx ∼ T 2 , cot θH =
ρxx
ρxy
∼ T 2

• In most of the cuprates

ρxx ∼ T , cot θH =
ρxx
ρxy
∼ T 2

• Actually in Bi-2201 is known that cot θH ∼ T 1.5



Other transport coefficients are less known

• Some of them are just dominated by lattice vibration
I κxx has an 80 % of lattice phonon contribution

• Transverse transport coefficients are independent of phonons
contribution (typically very small signal)
I The Nernst coefficient N ([Wang, 2006] for a review)

I The thermal Hall conductivity κxy (measured in LSCO
[Grissonnanche, 2019] and in YBCO [Zhang, 2000][Matusiak,
2009])

I Magnetoresistance typically B2 suppressed



More orderings discovered recently

• Charge-density wave (CDW) order appears to be a ubiquitous
feature of cuprate superconductors.

• Our material, Bi2Sr2CuO6:
I 2D CDW confirmed (by X-ray diffraction) to extend to optimal

and over-doped region [Peng 2018],
I low critical temperature (Tc ∼ 10− 33 K).



Charge density wave order

• What are charge density waves?
I Peierls (1955) suggested periodic distortion of 1D lattice can

lower total energy.
I Start with first Brillouin zone k = ±π/a half filled.
I CDW distortion → new superlattice of spacing 2a. New first

Brillouin zone band gap at k = ±π/2a.
I Gain in creating energy gaps can overcome loss of lattice

distortion.

• Incommensurate CDW → broken translation invariance.



CDW and pinning

As soon as the translation SB is pseudo-spontaneous (Goldstone
Bosons have a small mass) the AC conductivity can have an
off-axes peak [Fukuyama-Lee-Rice ’78,Delacretaz 2017]

Figure: Experimental BiSCO conductivity from [Tsvetkov 1997]

σ(ω) = σ0 +
ρ2

χππ

Ω− iω

(Ω− iω)(Γ− iω) + ω2
0

• for ω2
0 > Ω3/(Γ + 2Ω) there is an off-axes peak

• can the Drude to off axes peak originate from the same
mechanism?



CDW not only affects the conductivity

• Usually the enhancement in the Nernst effect at low T was
attributed to fluctuating superconductivity
• [Cyr-Choinière 2009] found a relation between TCDW and the

enhancement temperature

• Tν is the temperature at which one recovers a Fermi Liquid
expectation (Tν ∼ 2TCDW )
• CDW affects the Nernst signal also at fluctuating level



Where do we stand?

• Can one mechanism takes into account consistently all the
thermo-electric transport coefficients?

• Many intertwined phases ⇒ difficult to uncover

• We need a metallic behavior

• Strange metals are strongly coupled by nature

Hydrodynamics might come to help



A unified hydrodynamic picture?

Let us play simple and start with DC transport coefficients



Experiment

• We want to measure the temperature T and magnetic field B
dependence of all the thermo-electric transport coefficients

• We will restrict to transverse or electric transport coefficients
to avoid phonons contribution (no κxx)
I The electric conductivity ρxx

I The Hall angle cot θH =
ρxy
ρxx

I The magnetoresistence ρxx (B)−ρxx (0)
ρxx (0)

I The thermal Hall conductivity κxy

I The Nernst signal N

• Many coexisting phases ⇒ we need to properly define the
temperature range where the picture is supposed to be valid



B dependence of the DC transport coefficients

• For T < 20 K the Nernst starts to deviate from linearity ⇒
Vortex effect [Wang 2006]

• For T > 20 K the B dependence is the one expected for a
parity invariant system



T dependence of the DC transport coefficients
upper bound

• Estimation of Tν : the point where N/T deviates from
linearity at high temperature : TCDW ∼ Tν/2 = 65 K
[Cyr-Choinière 2009]

• In accordance with [Peng, 2018]



T dependence of the DC transport coefficients

• Relevant temperature interval 20 K < T < 65 K



Summary of experimental results

• How do experimental parameters depend on T and B?
I ρxx ∼ B0T as expected for strange metals

I ∆ρ/ρ ∼ B2T−4

I cot θH ∼ B−1T 1.5 as expected in Bi-2201 but different from
other materials (YBCO cot θH ∼ B−1T 2)

I κxy ∼ BT−3

I N ∼ BT−2.5



Hydrodynamics with broken continuous symmetries

When continuous symmetries are spontaneously broken, in addition
to currents there are also Goldstone Bosons which are long lived
and need to be included in the Hydro description.

Poisson brackets method [Son 2000]

• Define the Poisson brackets between the GBs φi and the other
DOFs Ai :

[Ai , φj ] = ...

• Define the correction to the Hamiltonian due to φi :

∆Hφ =

∫
ddx F (φi , ∂iφj)

• Compute the corrections to the EOMs

Ȧ = i [∆Hφ,A]



When translations are broken

• The phonon φi is the conjugate vriable of momentum density
πj :

[φi , πj ] = δij

• the most general phonon Hamiltonian is [Chaikin&Lubensky]:

∆Hφ =

∫
d2x

[
K

2
(∂iφ

i )2 +
G

2

(
∂iφj∂

iφj + k2
0φiφ

i
)]

• The EOMs for φi and πi are modified due to the non-trivial
commutation relations:

[πi ,H] = −k2
0Gφi

[φi ,H] = −vi



Hydrodynamics with broken continuous symmetries
and dissipation

The breaking of translations can be pseudo-spontaneous

• Momentum dissipation rate Γ: coupling to external lattice

• phase relaxation Ω1 of the GBs: present as soon as
translations are explicitly broken [Amoretti 2018]

• The magnetic fields F xy = B enters only as an external field
via the Lorentz term

The total EOMs:

∂t (n, s) + ∂i
(
J i ,Q i/T

)
= 0 ,

∂tπ
i + ∂jT

ji = F ijJj − Γπi − k2
0Gφ

i ,

∂tφa + ∂iJ
i
φa = −Ω1φa .



Constitutive relations

The only missing step is to provide constitutive relations for the
currents Ji , Qi/T , T

ij and J iφa to first order in the gradients
expansion around the equilibrium configuration T + δT , µ+ δµ:

Q i

T
= sv i − α0

(
∂ iδµ− F ijvj

)
− κ̄0

T
∂iδT − γ2∂

iθ1 ,

J i = nv i − σ0

(
∂iδµ− F ijvj

)
− α0∂

iδT − γ1∂
iθ1 ,

T ij = (nδµ+ sδT − (G + K )χ1θ1) δij − Gχ2θ2ε
ij

−η
(
∂ iv j + ∂jv i − ∂kvkδij

)
− ζ∂kvkδij + γ1Bθ2δ

ij ,

J i1 = −v i − γ1

(
∂ iδµ− F ijvj

)
− γ2∂

iδT − ξ1χ1∂
iθ1 + ξ2χ2ε

ij∂jθ2 ,

J i2 = εijJ j1 ,

• Transport coefficients

• Susceptibilities



Constraints

• Typical constraints for charged fluid:

σ0, κ̄0, η , Γ ,Ω1 ≥ 0 , κ̄0σ0 − Tα2
0 ≥ 0 .

• Special to CDW: ξ1 > 0.

• This subsequently leads to bounds on γ1 and γ2:

(γ2
1 , γ

2
2) ≤

(
σ0,

κ̄0

T

)
min

[
ξ1

K + G
,

Ω1

χππω2
0

]
.

• We will assume γ1,2 are small enough to be treated as
vanishing.

• If we assume a relativistic covariant fixed point then

α0 = −µσ0

T
, κ̄0 =

µ2σ0

T



The Martin-Kadanoff method

Having the modified EOMs and the constitutive relations one can
apply the Martin-Kadanoff procedure

• One can cast the EOMs in the following way (qA are the
relevant fields, s0

A are the sources):

∂tqA(t, ~k) + MC
A (~k,B)sC (t, ~k) = χB

As
0
B(~k) .

• The retarded Green’s function can eventually be computed

−
(
I6 + iω

(
−iωI6 + Mχ−1

)−1
)
χ .



Conductivities at low B

• Taking the DC transport coefficients to lowest order in B:
I Charge resistivity: ρxx = 1

σ0+σ̃ +O(B2).

I Magnetoresistance: ∆ρ
ρ = B2 σ

3
0 σ̃
n2

1
(σ0+σ̃)2 +O(B4).

I Thermal Hall conductivity:

κxy = −BT σ̃2s
n4

(
ns − 2µσ0n

2

T σ̃

)
+O(B3).

I Hall angle: cot ΘH = n
Bσ̃

1+
σ0
σ̃

1+2
σ0
σ̃

+O(B).

I Nernst coefficient: N = B σ0 σ̃
n2(σ0+σ̃)2σ0(s + µ

T ) +O(B3).

• DC conductivities are a sum of incoherent and relaxation
conductivities

σDC = σ0 + σ̃ with σ̃ =
n2

χππ

Ω1

Ω1Γ + ω2
0

.

• Only four variables σ0, σ̃, n and s. But we measure five
observables - system overconstrained.



Determining the hydrodynamic variables

• What does experiment imply for our hydrodynamic
variables?
I Consistency requires ρxx dominated by σ0 at low T i.e.

ρxx ∼
1

σ0
∼ T ,

I and
cotΘH ∼

n

Bσ̃
∼ T 1.5 .

I Using ∆ρ/ρ ∼ T−4 fixes

n ∼ T 1.5 and σ̃ ∼ T 0 .

I Finally s is given through κxy

κxy ∼ µB
σ0 σ̃

n2
s ∼ T−3 ⇒ s ∼ T .

I s is in accordance with specific heat measurement on our
sample and on YBCO [Loram 1991]



Recovering the Nernst behavior

• The Nernst coefficient behaves as

N ∼ µBσ̃

nT
∼ µ

T cot ΘH
∼ T−2.5 .

• The temperature range where the scaling agrees is exactly the
one predicted from other principles (vortices at low T and
Tν/2 at high T )



Relevance of CDW order

• The Nernst coefficient is dominated solely by σ̃:

σ̃ =
n2

χππ

Ω1

Ω1Γ + ω2
0

∼ T 0

I If σ̃ is dominated by CDW order (in accordance with
[Cyr-Choinière 2009]) then Ω ∼ T , ω0 ∼ T 2 (compatible with
a QCP behavior with a massive operator (remember the mass
of the phonon)

I If external momentum dissipation is dominating istead (Ω1 → 0
and ω0 → 0) then Γ ∼ T 3 (compatible with electron-phonon
scattering in a multiband metal, not our case...)



Outlook

• This is a consistency check of the validity of hydro
I to say something conclusive on σ̃ we need precision spectral

measurements

I If hydro is valid down to low T the Drude to off-axes peak
should be explained within the same picture

• Other cuprates have different temperature scalings for the
transport coefficients (eg Hall angle and κxy in YBCO)
I CDW order is measured almost in every cuprates ⇒ try to find

a consistent picture

I Is hydro a valid description in different points of the phase
diagram?




