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Brief	history
• Dirac	equation	(1929)
• It	predicts	the	existence	of	negative	energy	

solutions
• To	be	stable,	we	assume	that	these	are	occupied:	

Dirac	sea

Vacuum	
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Brief	history
• Sauter (1931):	the	electric	field	can	accelerate	an	

electron	from	the	Dirac	sea	and	excite	it

In Fig. 1, the potential energy V (x) and the lines V (x)+mc2 and V (x)−mc2

are plotted against the coordinate (the electric field is parallel x-axis). The
calculations of Sauter show that the eigenfunction associated to the eigenvalue
E0, for example, is large only in the regions I and II. In the region II, they
decrease exponentially. Therefore, a wave function that begins being large in
region I decreases slowly in region III where the transmission coefficient through
region II (which plays the role of a Gamow-wall) calculated by Sauter has the

order of magnitude e−
m2c3

!e|E| π. If we define |Ek| = m2c3

!e as the critical field

strength, we can also write e−
|Ek|
|E| π. As long as |E| ≪ |Ek|, pair creation is

so rare that it can be practically ignored. Then it must be possible to find
solutions of the Dirac equation playing the role of eigenfunctions, which are

large in region I but stay small of the order of e−
|Ek|
|E| π in region III. Conversely,

it must be possible to find solutions which are large in region III and small in
region I. After that we can characterize the state of the lowest energy by all
electron states being occupied whose eigenfunctions are large only in region III,
while the others are unoccupied. The energy density at x0 is calculated from the
differences of the electron energies with E0 [compare Eq. (31)]. By switching off
the electric field adiabatically, the so characterized state of the system goes over
into the state of the field-free space, in which only the negativ-energy electron
states are occupied.

Our calculations follow those of Sauter. If an external magnetic field B and
an electric field E are present, both pointing in x-direction, the Dirac equation
reads:

The movement in y- and z-directions can be separated from that in x-direction
by the ansatz:

We introduce a new operator K by
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• Tunneling	through	a	potential	barrier	of	energy



Brief	history
• Heisenberg	and	Euler	(1936)	“Consequences	of	

Dirac’s	theory	of	positrons”
• The	electromagnetic	field	creates	particle	pairs	and	

polarizes	the	vacuum	
• It	modifies	the	Maxwell	equations	in	vacuum



Brief	history
• Schwinger	(1951)	full	treatment	using	QED
• The	electromagnetic	vacuum	is	unstable	in	

presence	of	an	electric	field1 General Results
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Pictorial	description
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Absence	of	experiments
• The	Schwinger	effect	in	QED	has	not	yet	been	

observed
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• The	critical	electric	field	needed	cannot	be	
generated	in	laboratory	



On	the	other	side…
• Heike	Kamerlingh Onnes (1911)	experimental	

evidence	of	superconductivity
• Ginzburg–Landau	theory	(1950)	phenomenological	

description
• Bardeen–Cooper–Schrieffer	theory	(1957)	

microscopic	description



BCS	theory

• They	can	condensate	forming	a	“Cooper	pair”
• This	is	the	superconducting	ground	state

• The	electrons	moving	in	a	lattice	feel	an	effective	
attractive	force



• The	Cooper	pair	can	be	broken	leading	
to	excitation	called	“quasiparticle”

• These	are	quasi-electron	(negative	
charge)	and	quasi-hole	(positive	
charge)

BCS	Superconductor
single	excitation
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• The	energy	needed	is	the	
superconducting	energy	gap
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• The	“quasiparticle”	excitation	are	described	by	the	
Bogoliubov-de	Gennes equations

k
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BdG-Dirac	equation	connection
• In	1961	Nambu and	Jona-Lasinio noticed	a	formal	

similarity	between	the	BdG and	the	Dirac	
equations

Bogoliubov-de	Gennes equations
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BdG-Dirac	equation	connection
• If	the	Dirac	equation	predicts	the	Schwinger	effect,	

the	BdG equations	should	predict	a	
superconducting	Schwinger	effect
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Differences	and	analogies
• Analogy:	same	equations	– same	effect

• Differences:	
• The	physical	quantities	can	change	in	time,	e.g.,	

gap
• Screening	of	the	electric	field
• The	energy	gap	is	much	smaller	than	the	electron	

rest	energy.	It	could	be	observed	in	the	laboratory.



Model

• Electric	field	along	z
• It	completely	

penetrates	the	
superconductors
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Theoretical	framework

BCS	Hamiltonian

I. GENERAL FRAMEWORK

The general e↵ective Hamiltonian describing a standard superconductor is [S1]

Heff =

Z
dr
nX

↵

h
 †(↵r)He(r) (↵r) +�(r) †(r ") †(r #)

+�⇤(r) (r #) (r ")
o

(S1)

where ↵ is the spin index,  is the fermionic field satisfying the usual anti-commutation

rules and, with V set as a coupling energy, [S1]

�(r) = �V h (r #) (r ")i = V h (r ") (r #)i (S2)

is the self-consistent pair potential.

The single particle Hamiltonian operator is rescaled over the Fermi energy (chemical

potential) µ and it reads

He(r) =
1

2m

⇣
� i~r�

e

c
A
⌘2

+ U0(r)� µ (S3)

where A is the electromagnetic vector potential and U0(r) is a scalar potential independent

on the particle spin. With this notation we have included the Hartree-Fock potential U(r) =

�V h †(r ") (r ")i in the redefinition of µ [S1].

We consider thin superconducting films or wires and with limited screening so that the

electric field penetrates the superconductor and it is constant inside it. Alternatively, this

model can describe the e↵ect of the electric field on the edge of a metallic superconductor.

The electric field Ef is applied to a superconductor along the, say, z direction; i.e., the electric

field vector is Ef = {0, 0, Ef}. Under these hypothesis, we have A = 0 and U0(r) = eEfz.

However, by a gauge transformation, we can set U0(r) = 0 and A = {0, 0,�cEf t}.

We expand the fermionic fields in Eq. (S1) as

 (r↵) =
X

k

e
ik·r

ak↵

 †(r↵) =
X

k

e
�ik·r

a
†
k↵. (S4)

By performing the spatial integration we arrive at [S2–S4]

Heff =
X

k

n
hk�(t)(a

†
k"ak" + a

†
k#ak#)��a

†
k"a

†
�k# ��

⇤
ak"a�k#

o
(S5)
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Theoretical	framework

Only	opposite	momentum	particles	are	coupled		

Hamiltonian

We	can	solve	the	Schroedinger equation	with	the	time-dependent	
Hamitonian

We can collect the terms in Eq. (S5) separating the k and the �k contributions. By

using the state � = {ak", a
†
�k#}, the relation h�k� = hk+ and the anti-commutation rules

for fermionic operators a†k↵ and ak↵, we can rewrite Eq. (S5) in matrix form as [S2–S4]

Heff = 2
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@ ⇠k ��

��⇤
�⇠k

1

A = 2
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k

Bk ·⌃k = 2
X

k

Hk (S10)
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⇠k =
hk� + hk+

2
=

~2k2

2m
+

e
2
E

2
f t

2

2m
� µ, (S11)

Bk = {�Re(�),� Im(�), ⇠k} is a pseudo-magnetic field and ⌃k = {⌧x,k, ⌧y,k, ⌧z,k}. This is

nothing but the the Anderson pseudospin approach [S2, S3, S6, S7].

II. QUASI-PARTICLE CREATION: THE SUPERCONDUCTOR SCHWINGER

EFFECT

To highlight the Schwinger e↵ect and the creation of quasi-particles, it is convenient to

use the representation that diagonalizes (S10). This is the approach used in an alternative

derivation of the original Schwinger e↵ect in quantum electrodynamics in Ref. [S8].

The operator Hk has the same form of the standard homogeneous case and can be

analytically diagonalized [S1]. The eigenvalues are ±✏k = ±

p
⇠
2
k + |�|2 and the ground

and the excited states are, in the original {ak", a
†
�k#} basis, | k,�(t)i = {vk(t), uk(t)} and

| k,+(t)i = {u
⇤
k(t),�v

⇤
k(t)}, respectively, with

uk(t) =
1
p
2

s

1 +
⇠k(t)

✏k(t)
e
�i�(t)/2

vk(t) =
1
p
2

s
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⇠k(t)

✏k(t)
e
i�(t)/2

. (S12)

Be Uk(t) the diagonalizing operator such that U †
kHkUk = HD,k. Since Uk is time depen-

dent, the dynamics is determined by the Schroedinger equation

i~@t | k(z)i = (HD,k � i~ U
†
k@tUk) | k(z)i . (S13)

The contribution U
†
k@tUk derives from the fact that the Hamiltonian is time-dependent and

induces the transition between eigenstates of HD,k. Notice that Eq. (S13) depends on z.

Thus, it gives us the dynamics of the k-th mode in position z.
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• Critical	field
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electric	field	leads	to	
full	excitation	of	the	
ground	state
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Critical	fields

The	critical	electric	field	is	much	smaller	in	a	
superconductor.	

QED	(Schwinger)

1 General Results

� = ⌘
1X

n=1

1

n2
e�⇡nm2c3

eE~

Ec =
m2c3

e~ (1)

Ec = 1018V m�1 (2)

E  L = � · p  L +m R

E  R = �� · p  L +m R (3)

E u⇤
p = (✏p � µ)u⇤

p +� v⇤p
E v⇤p = �(✏p � µ)v⇤p +� u⇤

p

(4)

 L $ u⇤
p

 R $ v⇤p
� · p $ (✏p � µ)

m $ �

(5)

2↵2

45

(h/mc)3

mc2
⇥
(E2 �H

2)2 + 7(E ·H)2
⇤

(6)

2mc2 (7)

� (8)

1

Superconductor

1 General Results

� = ⌘
1X

n=1

1

n2
e�⇡nm2c3

eE~

Ec =
m2c3

e~ (1)

Ec = 1018V m�1 (2)

Ec = 5⇥ 108V m�1 (3)

E  L = � · k  L +m R

E  R = �� · k  L +m R (4)

E u⇤
k = (✏k � µ)u⇤

k +� v⇤k
E v⇤k = �(✏k � µ)v⇤k +� u⇤

k

(5)

 L $ u⇤
k

 R $ v⇤k
� · k $ (✏k � µ)

m $ �

(6)

2↵2

45

(h/mc)3

mc2
⇥
(E2 �H

2)2 + 7(E ·H)2
⇤

(7)

| gsi = ⇧k

⇣
uk + vka

†
k,"a

†
�k,#

⌘
|vaci (8)

2mc2 (9)

� (10)

⇠ (11)

1



Notes	on	excitation
• The	excitation	induced	by	the	electric	field	are	

different	from	the	thermal	ones

• Two	couples	are	excited
• They	are	

superconducting
• The	energy	gap	is	the	

same	for	a	completely	
excited	states

• They	are	coherent	
excitations

BCS	single	(thermal)	
excitation
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Ẽ

(1)

1

1 General Results

Schwinger QED

QED vacuum

e+

e�

~E

(1)

SCsingleexcitation

Condensate

h+

e�

�k #
k "

(2)

1

1 General Results

Schwinger QED

QED vacuum

e+

e�

~E

(1)

SCsingleexcitation

Condensate

h+

e�

�k #
k "

(2)

1

Condensate

1 General Results

Schwinger QED

QED vacuum

e+

e�

~E

(1)

Superconductor

single excitation

Condensate

h+

e�

�k #
k "

(2)

1

1 General Results

Schwinger QED

QED vacuum

e+

e�

~E

mc2

(1)

Superconductor

single excitation

Condensate

h+

e�

�k #
k "
�

(2)

1



Predictions

• The	superconductivity	should	be	weakened

4

Double	
excitation

Single	
excitation

Ground	
state
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FIG. 3. (a) Time evolution of �k,x (solid blue), �k,y (dashed
cyan) and |�k| (dotted green) for initial momentum k/kF =
0.999 and Ef/EC = 1. (b) The normalized order param-
eter |�|/�0 as a function of z/L, and for di↵erent electric
fields Ef/EC = 0.02, 0.2, 0.4, 1. (c) The transition scheme as-
sociated to the dissipative dynamics of a generic momentum
mode. The transition rates between the ground and the ex-
cited states are denoted with �ge and �eg while the ones due
to the destruction of the Cooper pairs are �se, �es, �sg and
�gs.

their contribution to the ground state. More precisely,
�GS,k = hBCS| ak"a�k# |BCSi = ukv

⇤
k and �EX,k =

h k,+|ak"a�k#| k,+i = �ukv
⇤
k [17, 25]. This has two

major implications. A fully excited state would be still
superconducting, preserving all the spectral properties
of the ground state, since �EX =

P
k �EX,k = ��GS .

The additional minus sign accumulated in �EX,k can be
interpreted as ⇡-shift of the superconducting phase that,
for the excited state, becomes e

i(�+⇡). Even though this
phenomenon has been discussed in a abstract way in a
few books [23, 25], this is, to our knowledge, the first time
that these elusive correlated excitations could be related
to macroscopic e↵ects, and indirectly observed. If the
k-th mode of the ground state is excited, its negative
contribution to � can decrease the pairing potential. We
expect a weakening of superconductivity related to these
interferences, even though it is worth to mention that
in a more general picture the k-th mode could be in a
coherent superposition of ground and excited states.

In the Anderson pseudo-spin formalism, the order pa-
rameter for the k-th mode is �k = �k,x + i�k,y =
h⌧x,ki + ih⌧y,ki where the average hi is calculated with
state obtained by the dynamical evolution [18, 19, 21, 22].
The numerical calculation displayed in Fig. 3(a) shows
that while |�k| is constant, �k,x and �k,y change in time
signaling an accumulated phase. The pairing potential at
t = tmax is shown in Fig. 3(b) for di↵erent electric field
values. As the electric field increases the pairing poten-
tial is reduced because of the interference e↵ects. Despite

the fact that the environmental e↵ect are not included,
this already gives strong indications that the presence of
a static electric field drastically weakens superconductiv-
ity.

Interestingly, the SSE should be associated with non-
equilibrium phenomena which can be eventually mea-
sured. We neglect the momentum scattering leading to a
reduction of kinetic energy [37] and discuss the destruc-
tion of the excited states with no momentum change,
which is the relevant process for the generation of non-
equilibrium features (see Fig. 3(c) and [17] for technical
details). Eventually, reasonably assuming that the time
scales associated with these two processes are well sepa-
rated allows us to focus only on the second one.

A laser analogy can help to understand how non-
equilibrium, i.e., non-thermal, distributions can arise in
this context. As in a laser, the electric field acts as an
external pumps that excites the ground state directly to
the double-excited state. This is unstable and can decay
directly to the ground state or through the single excita-
tion state with the Cooper pair destruction. In this way,
the standard single excitation states are populated. The
balance between the energy pumping due to the electric
field, the dissipation of kinetic energy through momen-
tum scattering and relaxation will eventually lead to a
steady state. However, while the transitions by and from
the single excitation state are thermal, the transition be-
tween the ground and double excited state is not. There-
fore, as in a laser, the steady state is not related to a
thermal or non-equilibrium distribution [17].

The fact that the single-excitation state are, in gen-
eral, non-thermal, opens the way to a direct measure
of the SSE through tunnel spectroscopy [24]. When
two superconductors with di↵erent gap, i.e., �1 and
�2 with �1 < �2, are connected with a tunnel junc-
tion and subject to a voltage V , at finite temperature
T the I � V curve shows a resonance current peak at
eV = |�1��2| [24] due to the presence of quasi-particle.
If �1, �2 ⌧ kBT and Ef = 0, the thermal excitation
should be negligible and no current peak at |�1 � �2|

should be observed. If we apply a static electric to
the superconductor with gap �1, according to the SSE
model with dissipation discussed above, the increase in
Ef should generate double and single excitations and this
should results in a current resonance at |�1 � �2|. The
presence of this resonance peak at low temperature and
the corresponding excess of (non-thermal) quasiparticles
created by the electric field would be the first direct ob-
servation of the SSE.

The SSE and its manifestations should be observable
with currently available laboratory techniques. Indeed,
the described phenomenology is compatible with recent
experiments performed on superconducting wires and
nanobridges subject to strong electric fields. The ob-
served weakening of superconductivity, the invariance of
the electric field direction [26–30, 39], and the creation

• Spatial	dependence	of	
the	superconducting	
gap

Increasing	
electric	field



Predictions

• At	low	temperature	there	should	be	an	excess	of	
quasiparticles

• We	expect	the	quasiparticles	to	have	a	non-
thermal	distribution

• The	superconductivity	should	be	weakened
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also obtained in Al FETs suggests that these effects might be intrin-
sic to any metallic superconducting film.

To exclude any possible role of the substrate on the observed 
phenomena we fabricated similar Ti FETs on several SiO2 commer-
cial wafers produced by different manufacturers (both doped and 
undoped), and sapphire substrates, without noting any substantial 
difference in FET behaviour (see Supplementary Information). 
Moreover, any hot spot mechanism due to direct charge injection 
into the wire can be ruled out as the main driving principle for Ic 
suppression due to the incompatibility with the bipolarity of the 
effect, and the independence of the critical temperature on gate 
voltage. In addition, a possible electron field-emission mechanism 
can also be excluded, because it is usually expected to occur for elec-
tric fields much larger than those applied in the experiment.

A simplified description of the Ic behaviour in our system can be 
obtained through a phenomenological model developed within the 

Ginzburg–Landau formalism17 (see  Supplementary Information for 
details). According to our model, the wire critical current can be 
written as

= − −
∕ ∕
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Figure 2c shows the Ic versus Vg characteristics calculated from 
equation (1) for the same temperatures as in Fig. 2b. In the calcula-
tions we used the values for Tc and Vg

c determined from the experi-
ment. Though definitely not conclusive and rather idealized, this 
theory is already able to grasp the essential features of our super-
current FETs.
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Fig. 1 | Metallic supercurrent FET pre-characterization. a, Schematic of the 
all-metallic supercurrent FET. Back- and side-gate voltages  
(Vb and Vs, respectively) are used to control the amplitude of the Ti wire 
critical supercurrent. Vb is applied to the p++ Si substrate. In four-probe 
measurements, an electric current I is fed into the superconducting wire, 
and the voltage drop V is recorded simultaneously as a function of the 
applied gate voltage. b, Pseudo-colour scanning electron micrograph of 
a representative Ti supercurrent FET. The wire has a length of 900!nm, 
width of 200!nm and thickness of 30!nm. The transistor core is shown in 
blue and the Ti side gates are in cyan. c, Resistance R versus temperature 
T (blue line, bottom horizontal axis), and R versus perpendicular-to-plane 
magnetic field B at 5!mK (light blue line, top horizontal axis) characteristics 
of the supercurrent FET. The normal-state resistance of the device is 
RN!~!45!Ω . d, FET current I versus voltage V characteristic measured at 5!mK 
bath temperature. ≃I 11c  μ A denotes the wire switching critical current, 
corresponding to a current density of ~1.8!× !105!A!cm−2, consistent with Ti 
in this temperature range12. Inset: full temperature evolution of Ic, and its 
quenching at the critical temperature (Tc!~!410!mK). Dashed line: prediction 
of ref. 12. Error bars represent the s.d. of critical current Ic calculated over  
50 measurements.
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Fig. 2 | Electrostatic-field dependence of the supercurrent FET. a, Current–
voltage (I− V) characteristics of a Ti supercurrent FET measured at 5!mK for 
several values of applied gate voltage (Vg!≡ !Vb!= !Vs). The hatched area is a 
guide to the eye emphasizing the monotonic suppression of critical current 
Ic down to zero by increasing ∣ ∣Vg . When the supercurrent vanishes, the I(V) 
characteristics coincide with that in the normal state, independent of the 
value of applied gate voltage. The curves are horizontally offset for clarity. 
b, Behaviour of critical current Ic versus Vg measured at different bath 
temperatures T. Note the full suppression of Ic occurring for ∣ ∣Vg !≳ !40!V. 
This threshold voltage turns out to be almost independent of the bath 
temperature. Inset: Ic(Vg) characteristics for a supercurrent transistor made 
of Al at two different bath temperatures. Here, the switching current is as 
large as ~12.3!μ A, corresponding to a current density of ~3.7!× !106!A!cm−2 in 
Al (refs 10,12). Note that the different shapes of the Ic(Vg) curves in Ti and Al 
might be related to a different temperature evolution of the electrostatic 
screening in the two superconducting materials. c, Phenomenological 
critical current Ic versus Vg characteristics calculated with an ad hoc 
model based on Ginzburg–Landau formalism for the same values of bath 
temperature as in b. We emphasize the agreement with the experimental 
data provided by the model, both for the monotonic decay of the Ic(Vg) 
characteristics and for the temperature independence of the threshold 
voltage (Vg

c) over which full suppression of Ic occurs. d, Ic versus Vg 
characteristics measured at different bath temperatures T of a 4!μ m!× !4!μ m 
Ti FET showing electrostatic field-tuning of the critical current occurring in 
a large (with respect to λL and ξ0) superconducting structure. In this case, 
the maximum achieved relative reduction in Ic is ~30% at 100!mK. Here, 
the electrostatic field was applied only through the back gate (Vg!≡ !Vb). 
A critical temperature ≃T 470c !mK and a perpendicular-to-plane critical 
magnetic field ≃B 115c !mT are the main characteristic parameters of the Ti 
film realizing this FET. Error bars in b and d represent s.d. of critical current 
Ic calculated over 50 and 20 measurements, respectively.
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• The	decrease	of	the	critical	
current	is	associated	to	the	
weakening	of	supercurrent

De	Simoni et	al.	Nat.	Nanotechnology,	13,	802	(2018)

• Same	critical	electric	field	
predicted	by	the	theory
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Recent	experiments

Puglia	et	al.	Phys.	Rev.	Applied,	13,	054026	(2020)

• Experiments	point	out	an	excess	of	quasi-particles	
at	low	temperature	(non-thermal)

measured

equilibrium

• They	seem	to	suggest	the	
presence	of	non-equilibrium



Open	problems	1

• To	have	a	quantitative	comparison	we	need	a	dissipative	
interaction

• The	superconductor	should	be	able	to	dissipate	the	
energy	excess	

• Effective	theory	with	energy	dissipation
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Figure 2d presents the Ic versus Vg characteristics measured at 
different temperatures of a square-shaped Ti transistor consisting 
of a 4-μ m-long side, and the same film thickness. This structure 
was conceived to also prove the effect on a wide superconducting 
region with lateral dimensions largely exceeding λL and ξ0. The 
curves reveal a similar field-effect-induced Ic suppression, though 
with reduced intensity with respect to the wires, as here only the 
back gate (Vg ≡   Vb) was applied. Yet, this result suggests that the rel-
evant spatial scale is the one parallel to the applied electric field, in 
analogy to the Meissner–Ochsenfeld effect. Therefore, even in large 
but thin-film structures λ ξ≪t( , )L 0 , Ic can be deeply affected by a 
perpendicular-to-plane electrostatic field.

We now discuss the joint impact of both electric and magnetic 
fields on the supercurrent in the wire. The perpendicular-to-plane 
magnetic field dependence of the FET critical current at 5 mK and 
Vg =  0 is shown in Fig. 3a. Here we note the magnetic-field-induced 
drop of Ic, and its full suppression at ~127 mT. Furthermore, the fine 
structure visible on the non-monotonic Ic(B) characteristic might 
be ascribed to the penetration of Abrikosov vortices in the Ti film 
on increasing B (ref. 18). The full Ic dependence on Vg for several 
magnetic fields at 5 mK is summarized in Fig. 3b. All the follow-
ing characterizations were performed before any external magnetic 
field was applied to the transistors, unless explicitly stated. Similar 
to temperature, the effect is almost bipolar in Vg, and increasing 
B leads to a widening of the Ic plateau. In addition, the threshold 
voltage Vg

c turns out to be weakly dependent on B, in contrast to 
its temperature independence (Fig. 2b). The reason for this differ-
ent behaviour is still not understood. We note how sizable is the 
effect of the electric field on Ic, even in the presence of magnetic 
fields approaching the critical value. Yet, our model still provides 
a reasonable description of the experiment, as shown in Fig. 3c  
(see  Supplementary Information for details).

Finally, quantification of the spatial extension of the electric-
field-induced non-local effect in the superconductor at 5 mK and 
B =  0 is shown in Fig. 3d, where the Ic suppression parameter S  is 
defined as S  =  100 ×  = − =I V I V[ ( 0) ( 90V)]i ic s c s / =I V( 0)c si  (with 
i =  1, 2, see inset of Fig. 3d, which presents a representative Ti comb-
like device), and the back-gate voltage is fixed at Vb =  45 V. Unlike 
Figs. 2a,b and 3b, a higher gate voltage of Vsi =  90 V was set to pro-
vide sizable supercurrent suppression via a single side gate. S  was 
determined for each wire composing the comb-like Ti FET (which 
was designed intentionally to be asymmetric), and plotted versus 
the distance x between the centre of each wire and the lateral edges 
of the comb. A clear and substantial fading of field-effect-induced 
suppression of Ic is observed with increasing distance. The dashed 
line in Fig. 3d is an exponential decay fit to the data, from which we 
extract an attenuation length λ ≃ ±770 150 nm. This, intriguingly, 
is in reasonable agreement with the London penetration depth 
λ ~ 900L  nm previously estimated in our Ti films. Furthermore, 
measurements of λ at different bath temperatures reveal that it is 
almost constant within experimental error up to ~80% of Tc, then 
rapidly decreases and vanishes on approaching the critical temper-
ature (see Supplementary Information). The above results on the 
spatial extension of the field-induced non-local effect contribute to 
further excluding direct heat injection into the wire as the origin 
of supercurrent suppression, because the typical thermal relaxation 
length in superconductors at low temperatures is on the order of 
tens of micrometres19.

Our results on supercurrent FETs reveal the significant bipo-
lar impact of a static electric field on a BCS superconducting film.  
Our physical interpretation points in the direction of a spatial 
deformation of the Cooper pairing parameter driven by electric 
fields localized at the surface of the superconductor by conventional 
screening. This yields a reduction of the available net wire section 
able to carry a supercurrent flow. A further step towards under-
standing the above effects might come from a set of complementary 

experiments, such as probing the superconductor density of states 
through tunnelling spectroscopy, or investigating the phase rigidity 
by means of interference in superconducting quantum interference 
device, and the kinetic inductance in radiofrequency-based experi-
ments. These findings represent a tool to envision superconducting 
field-effect devices ranging from tunable Josephson weak links8,9 
or interferometers20–22 to Coulombic23,24 and coherent caloritronic 
structures25,26 as well as single-photon detectors27,28, which would 
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Fig. 3 | Magnetic-field dependence of the FET, and spatial extension of 
the electric-field-induced Ic suppression effect. a, Typical pattern of critical 
current Ic versus perpendicular-to-plane magnetic field B measured at 5!mK 
for Vg!= !0. b, Behaviour of Ic versus Vg measured at 5!mK for several values 
of perpendicular magnetic field. c, Theoretical critical current Ic versus Vg 
characteristics calculated at 5!mK for the same values of magnetic field 
as in b. d, Inset: pseudo-colour scanning electron micrograph of a typical 
Ti comb-like FET used to investigate the spatial extension of the electric-
field-induced Ic suppression effect in the superconducting film. White 
dashed arrows indicate the direction of the critical current measured 
in each wire comprising the comb. The intentional asymmetry of the 
device geometry allows the use of the same wire for two Ic measurements 
at different distances from the side gates. Main panel: critical current 
suppression parameter (S) versus distance x measured at 5!mK for 
B!= !0. The suppression parameter represents the relative Ic reduction for 
Vg!= !90!V with respect to zero applied side-gate voltage, so S = 0 indicates 
the absence of field-effect-induced suppression of the critical current. 
x represents the average distance of the centre of each wire from the 
lateral edges of the comb. The critical current of each wire is recorded by 
polarizing one side gate at a time (that is, Vs1!≠ !0 or Vs2!≠ !0) while keeping 
the back-gate voltage fixed at Vb!= !45!V. The plot summarizes all S  values 
measured in two different comb-like FETs having an average distance 
of 500!nm and 1!μ m between the superconducting wires. Dashed line: 
exponential damping fit to the data (S S λ= − ∕x x( ) exp( )0 ) with decay 
length λ!≃ !770!± !150!nm. Error bars in b and d represent s.d. of critical 
current Ic and S , respectively, calculated over 50 measurements.
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• The	effects	seem	to	a	length	scale	of		
several	times	the	coherence	length

1 General Results
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Exponential	decay	with	length	scale	of	several	
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• It	might	be	related	to	the	extension	of	
superconducting	excitations

Open	problems	2

• The	effects	seem	to	a	length	scale	of		
several	times	the	coherence	length

1 General Results
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• Assuming	that	the	electric	field	
penetrates	only	close	to	the	edge	
(fraction	of	 ),	these	are	non-local	effect
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• As	discovered	by	Heisenberg,	Euler	and	Schwinger,	the	
vacuum	polarization	changes	the	Maxwell	equations

• Are	similar	non-linear	corrections	present	in	the	
superconductor?

Future
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• There	are	additional	non-linear	corrections	to	the	
Lagrangian



• Starting	from	QED-superconductivity	analogy	we	have	
predicted	the	presence	of	the	superconducting	Schwinger	
effect

• The	e.f.	excites	two	electron-hole	pairs
• The	model	predicts	an	effect	on	the	gap	and	an	excess	of	

(out-of-equilibrium)	quasi-particles
• These	are	compatible	with	recent	experiments

Summary



Thank	you


