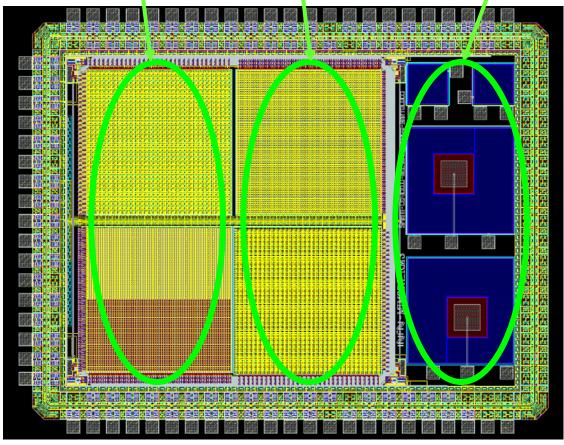
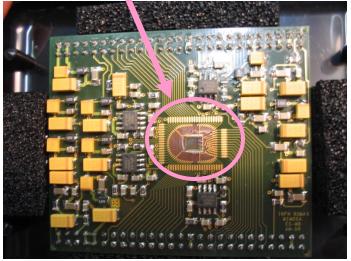
MAPS (Monolithic Active Pixel Sensor) design: experience at INFN-LNF

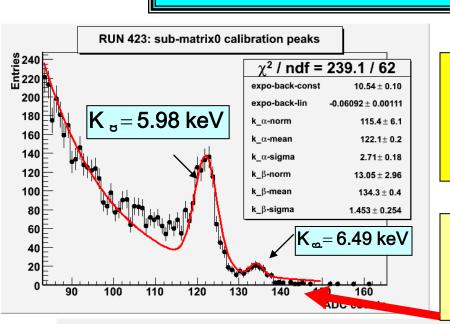

Eleuterio Spiriti

(INFN LNF/Roma Tre)

- 1. A brief history:
 - Mimoroma1
 - Mimoroma2
 - Mimoroma3
- 2. Further studies for "Mimoroma4" (not built)
- 3. Solutions proposed
- 3. Simulation results: mismatch, noise, S/N, power, area.
- 4. Conclusions

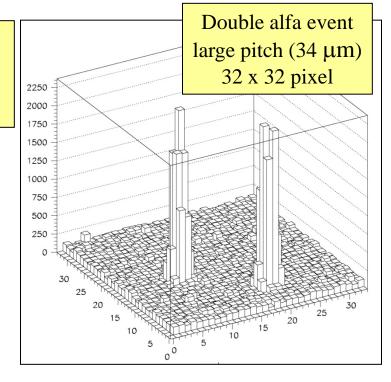

Mimoroma1: the first trial!

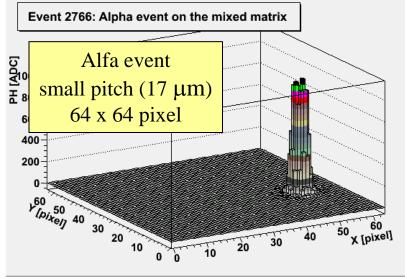
Pitch = $17\mu m$ 4096 pixels Pitch = $34\mu m$ 1024 pixels Test structures



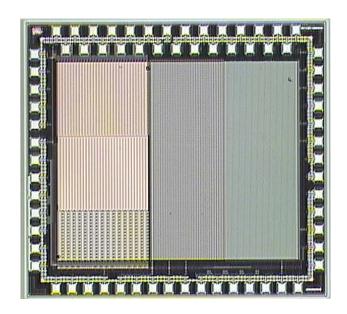
- TSMC 0.25 μm
- 8 µm epi thickness
- gate all around design for radiation hardness
- different pixels architecture (different collecting diode number and dimensions)

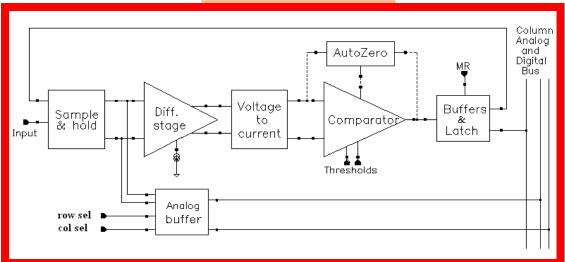
Chip



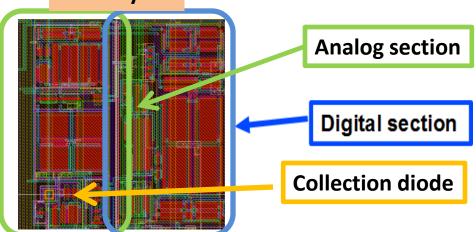

Mimoroma1: the first trial!

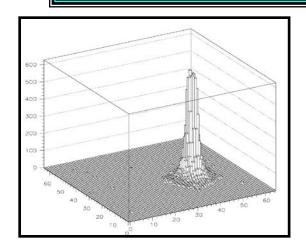
mimoroma1 chip (first? MAPS designed at INFN)

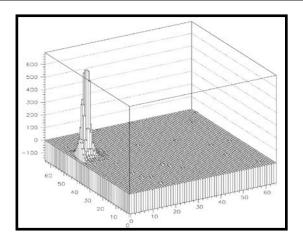




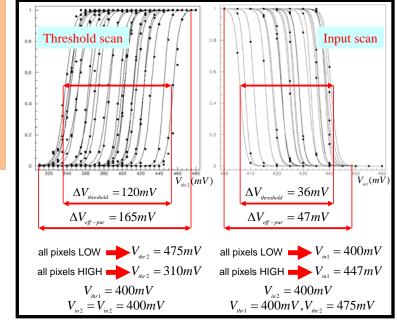
The Mimoroma2 example (only NMOS architecture)


Pixel architecture

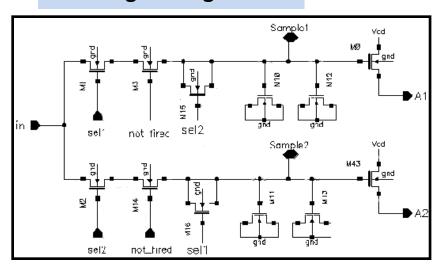


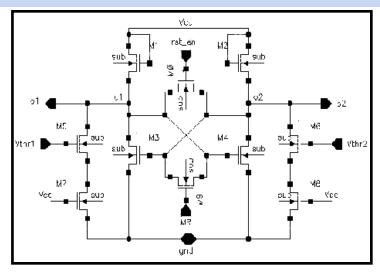

Pixel layout

- STMicroelectronics CMOS 130nm
- Chip size: 2mm x 3mm
- 18 different arrays
- sparsified pixel size: 25μm x 25μm


The Mimoroma2 example (only NMOS architecture)

Discriminator
threshold
dispersion: only
NMOS transistor
used in the design.

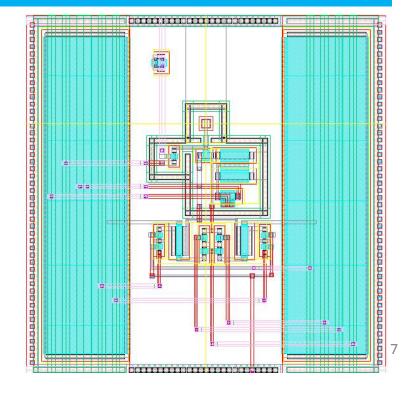

Alpha particles detection: Cluster reconstruction of two events produced by an alpha particle hit on the two 32x64 non-sparsified pixel matrices (HG and LG) by Americium 241 radioactive source.


Mimoroma3: a jump into 3D technology (130nm Chartered, GlobalFoundries, Tezzaron)

Input stage 3T configuration

S&H stage configuration

Discriminator stage configuration Only NMOS configuration in mimoroma2 NMOS/PMOS used in mimoroma3



- A. Bulgheroni, E. Spiriti, J. Mlynarczyk, "Design and characterization of a Monolithic Active Pixel Sensor in 0.25μm Technology" Proceedings of the 10th ICATPP Conference. Held 8-12 October 2007, DOI: 10.1142/9789812819093_0156
- J. Mlynarczyk, E. Spiriti, A. Bulgheroni, "Design of a monolithic active pixel sensor in ST 0.13um technology," Proceedings of the 10th ICATPP Conference, Oct. 2007, pp. 999-1003.
- Mlynarczyk, J., Spiriti, E.; "On pixel xignal processing for MAPS sparsified readout implemented in CMOS VLSI technology"; Signals and Electronic Systems, 2008. ICSES '08. International Conference on; DOI: 10.1109/ICSES.2008.4673359
- Spiriti, E., Mlynarczyk, J.; "Results of an on pixel sparsification architecture in a MAPS test chip in STM 130nm technology"; Nuclear Science Symposium Conference Record, 2008. NSS '08. IEEE; DOI: 10.1109/NSSMIC.2008.4774596

Pixel layout area

Mimoroma3 (Chartered 0.13μm) 2*25μm*25μm=1250μm² 25μm x 25μm Digital Tier pixel 25μm x 25μm Analog Tier pixel

Area estimation:

Mimoroma3 $\rightarrow \Sigma MOS(wxl)^2 270 \mu m^2$ Mimoroma4 $\rightarrow \Sigma MOS(wxl)^2 135 \mu m^2$ 90% S&H MOS capacitors 85% S&H MOS capacitors

- 50 μm pitch should be NO PROBLEM with 0.13 μm and 0.18 μm technologies
- 25 μm pitch probably possible with 0.13 μm, difficult/impossible with 0.18 μm.

Further studies for "mimoroma4" → modified mimoroma2/3 architecture only simulations shown from here on!

Constrains

- In single particle application (MIPs) main constrain → rate (100Mhits/s*cm²)
- signal level \rightarrow 500-1000 electrons
- if ADC how many bits, dynamic range?
- readout time?
- SDS Sparse Data Scan?

Considerations/questions

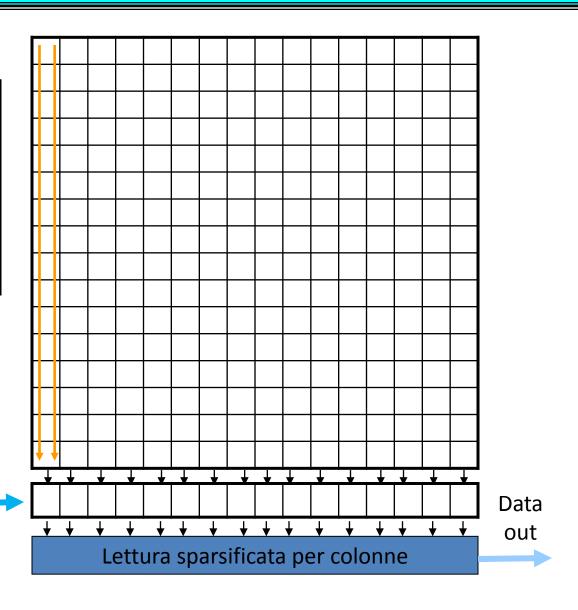
- Digital readout only?
- → in-pixel discriminator (noise, mismatch, power, area) fast column/matrix(?) digital readout? only digital logic @ End of Column
- Analog readout only?
- → discriminator and/or ADC @ End of Column "slow" column/matrix(?) analog readout

- Both?

→ Fast digital and Analog readout (speed factor 10-20) fast column/matrix readout fast column/matrix readout

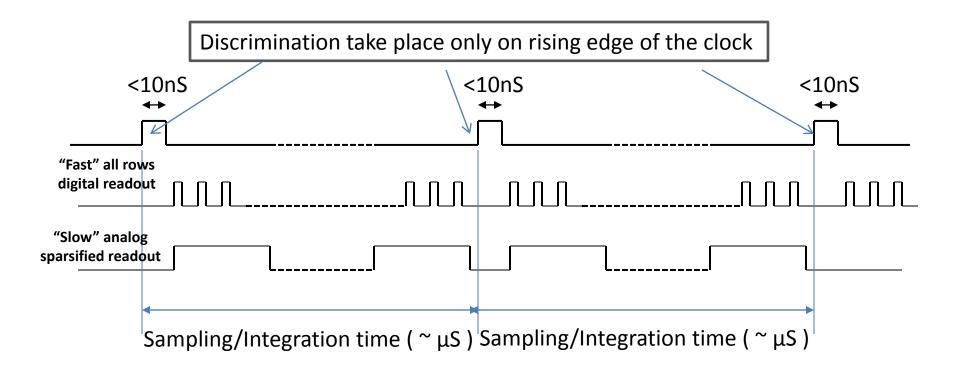
- Discriminator

- → level sensitive/latch type (integration time)(?) mismatch correction?
- In pixel analog pipeline? → How many stages deep? (one minimum if Analog RO)
- End of Column readout

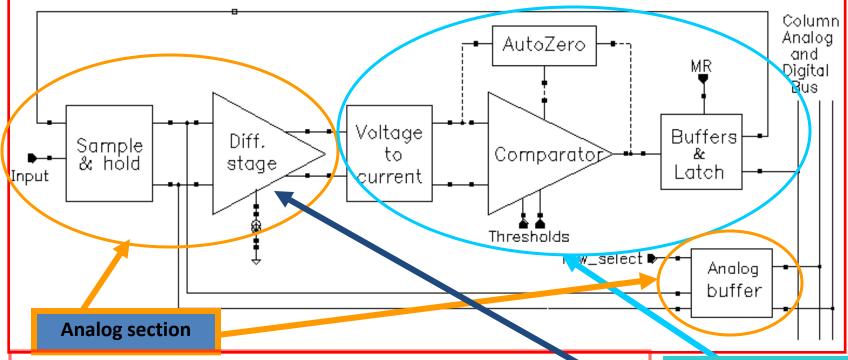

Matrix readout architecture

Solution based on:

- in pixel discrimination
- in pixel analog memory
- column readout
- two column readout busses:
 - digital on/off (fast)
 - analog (slow) sparsified


End of column digital (fast synchronous readout)

Sparsified (slow) analog/ ADC readout



Achitecture: timing!

- Sample & Hold and discriminator sampling @ Integration Time period
- All digital outputs of a column are readout in the integration time (rolling shutter)
- All analog output over threshold are readout in the integration time (token passing)
 with one level deep analog pipeline (data lost if "high" occupancy)
- Time resolution defined by Integration Time (time stamp resolution)

Pixel architecture

- Fully differential (CDS comes naturally) configuration
- Switching technique (fast, small, low power)
- Autozero to compensate mismatch
- Analog signals available (dE/dx possible)
- Discriminator in pixel → sparse data scan
- Sample & hold/discriminator control in rolling shutter mode
- Input from 3T scheme or any integration front-end!!
- 3D coupling to "sensor" layer with or without FE possible

Digital section

Simulation shows that further gain (differential stage) Is NOT needed!

Architecture manageable rates and readout times.

Rates for the 2 options: **25 μm or 50 μm pitch**:

```
A - 25 μm pitch
```

```
400x400 matrix - 10x10 mm<sup>2</sup> - 160000 pixel 

100 Mhits/s*cm<sup>2</sup> - 1 Mhits/s*mm<sup>2</sup> - 625 hits/s*pixel 

\lambda = 250.0*10<sup>3</sup> hits per second per column in average 

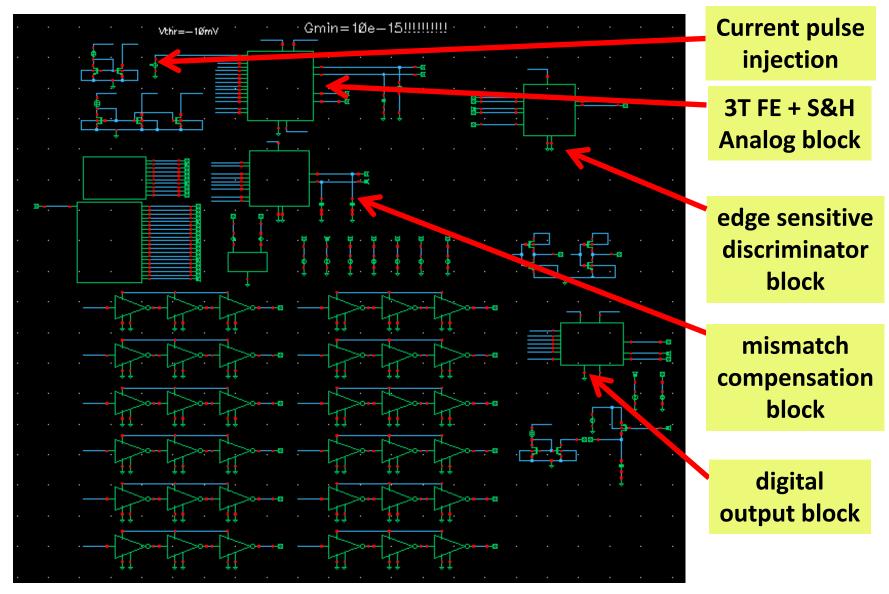
T = Column scanning time = 9ns*400=3.6 µs 

average number of hits to readout per column per scanning time = \lambda*T 

\lambda*T = 250.0e3*3.e-6 = 0.9 hits/column*scanning time
```

B - 50 μm pitch

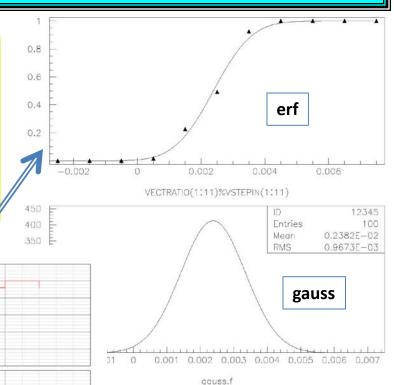
```
200x200 matrix - 10x10 \text{ mm}^2 - 40000 \text{ pixel}


100 Mhits/s*cm² - 1 \text{ Mhits/s*mm}^2 - 2500 \text{ hits/s*pixel}

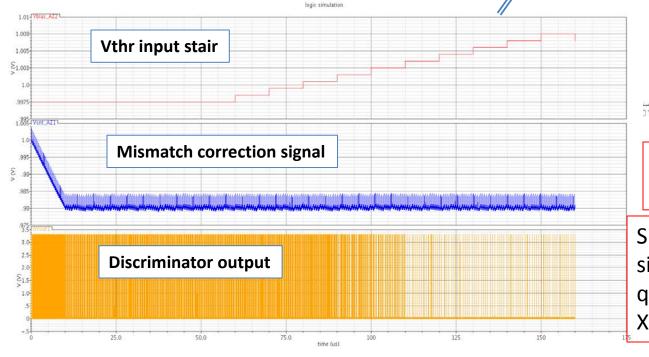
\lambda = 500.0*10^3 \text{ hit per second per column in average}

T = \text{Column scanning time} = 9\text{ns*}200=1.8 \,\mu\text{s}

\lambda*T = 500.0e3*1.8e-6 = 0.9 \,\text{hits/column*scanning time}
```


Block schematic of the pixel (GlobalFoundries $0.13 \mu m$, q2v3)

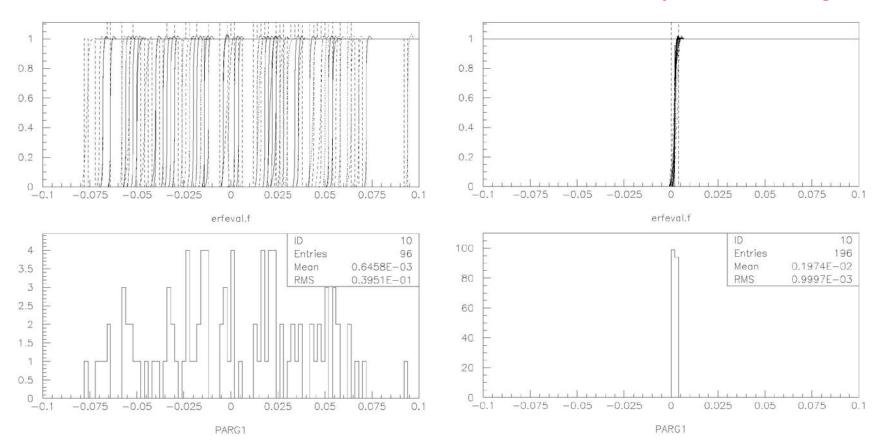
In pixel discriminator MonteCarlo transient noise simulation


Switched capacitor circuit simulation quite tricky:

- Transient noise Monte Carlo simulation needed
- Input threshold reference voltage stair applied after dispersion correction signal stabilization
- Discriminator output counted on each stair step for threshold scan evaluation

Simulation at 100ns Integration time.

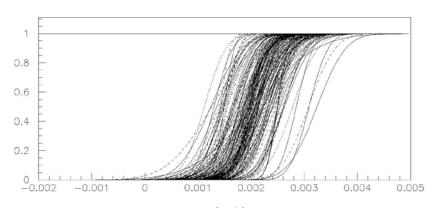
Simulated 160 μs in ~80 min simulation time on a core of a quad CPU/quad core Intel(R) Xeon(R) E5520 @ 2.27GHz

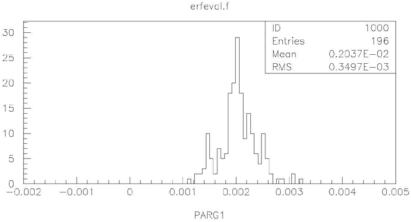

Discriminator threshold dispersion simulation with correction circuit switched off/on

Mismatch correction circuit off:

- x-scale ±100 mV
- offset RMS = 39 mV

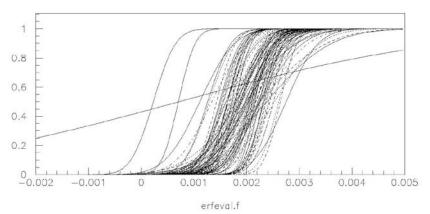
Mismatch correction circuit on:

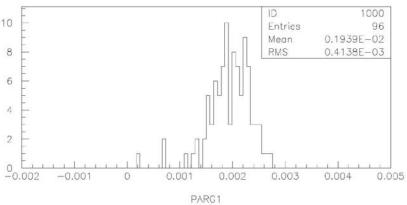

- x-scale ±100 mV
- offset RMS reduced by 2 orders of magnitude



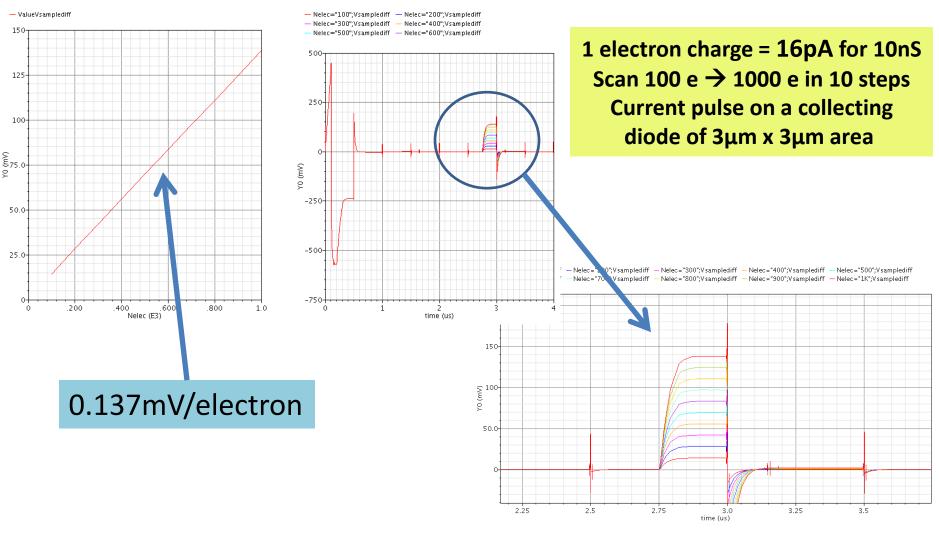
Discriminator/full pixel threshold dispersion with correction circuit on

Mismatch correction circuit on, discriminator circuit simulation:

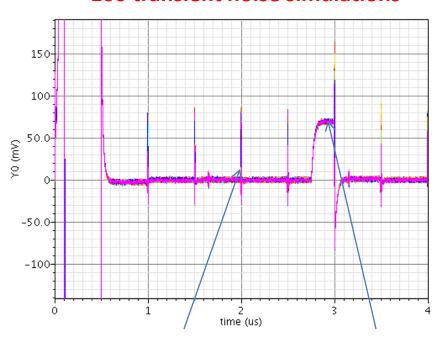

- x-scale (+5 mV, -2 mV)
- offset RMS = **0.35** mV



Mismatch correction circuit on, FULL PIXEL circuit simulation:

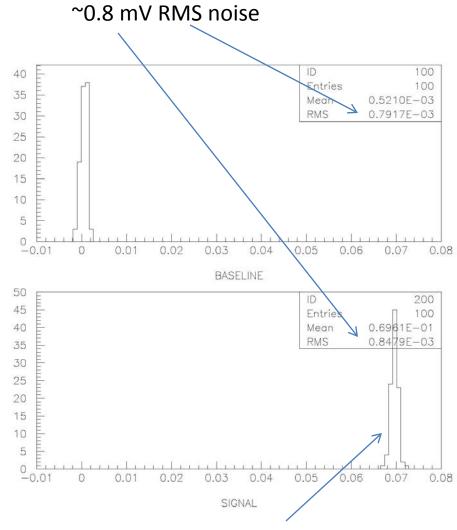

- x-scale (+5 mV, -2 mV)
- offset RMS = **0.41 mV**

Pixel analog signal response/"calibration"

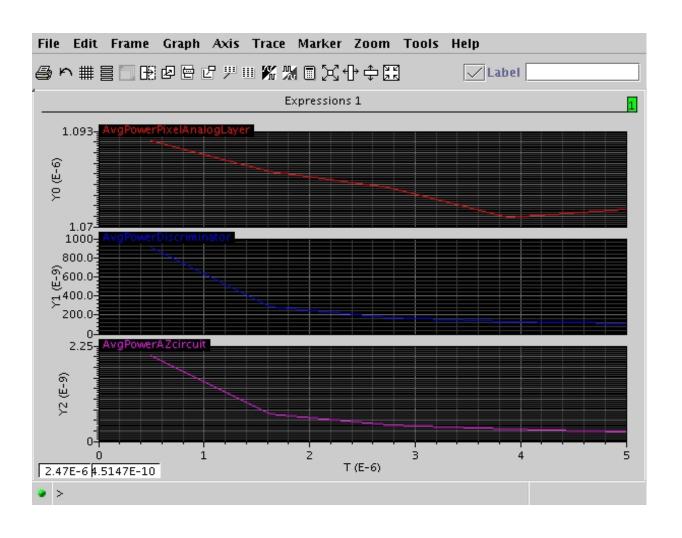

Parametric transient noise simulation (no MonteCarlo)

Full pixel (3T configuration FE) signal to noise ratio

Differential input signal to discriminator


100 transient noise simulations

Sample of baseline


Sample of signal

Noise RMS=0.85 mV \rightarrow \rightarrow 0.85 mV/(0.137mV/electron) \rightarrow \rightarrow 6.2 e ????!!!!! Residual mismatch noise to be added! Sqrt(0.85²+0.41²)=0.94 \rightarrow 6.9 e ????!!!!!

500 e injected pulse ~ 70 mV

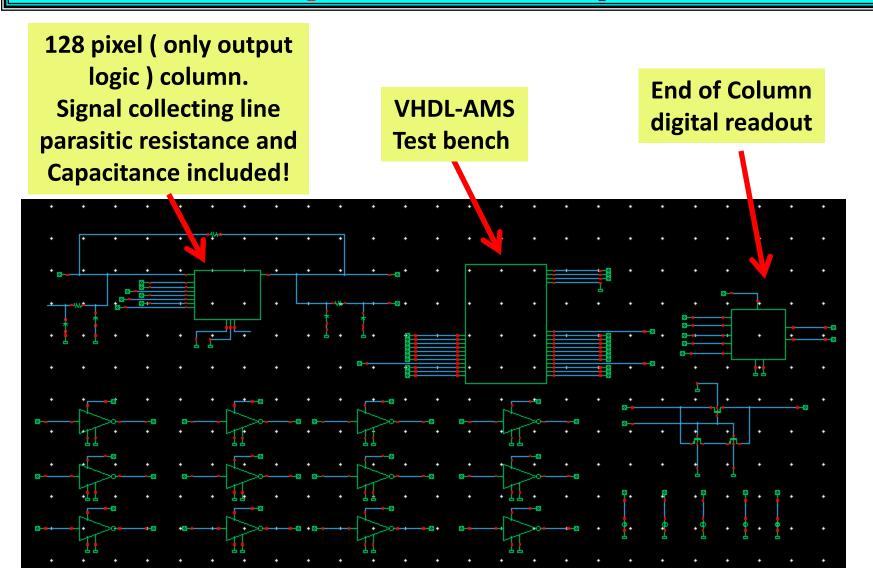
Pixel power consumption @ different integration times $(500nS \rightarrow 5\mu S)$

Analog layer ~ 1μW

Discriminator: 1µW→200nW

Offset compensation: 2.25nW → 0.25 nW ???

Possible approach for column readout from Static RAM designs (brief bibliography sketch)


SRAM technology bibliography examples:

- H. Nambu, K. Kanetani, K. Yamasaki, K Higea, M. Usami, T. Kusunoki, K. Yamaguchi, and N. Homma,
 "A 1.8ns Access, 550MHz 4.5Mb CMOS SRAM"
 in IEEE Intern. Solid-State Circuits Conference Digest of Technical Papers. Ieee, Feb. 1998, pp. 360-361.
- T. Uetake, Y. Maki, T. Nakadai, K. Yoshida, M. Susuki, and R. Nanjo, "A 1.0ns Access 770MHz 36Kb SRAM Macro" in 1999 Symp. On VLSI Circuits Digest of Technical Papers, New York, June 1999, IEEE, pp. 109-110
- H. Nambu, K. Kanetani, K. Yamasaki, K Higeta, M. Usami, TY. Fujimura, K. Ando, T. Kusunoki, K. Yamaguchi, and N. Homma,
 "A 1.8ns Access, 550MHz 4.5Mb CMOS SRAM"

IEEE Journal of Solid-State Circuits, vol.33, no. 11, pp. 1650-1657, Nov. 1998.

Fast column readout is possible.

End of Column digital readout (bitline bus parasitics included)

VHDL-AMS test bench code

Column input pattern to be readout

```
vhdl.vhms (/mnt/homedir/spiriti/mimoroma4_oa/TB_mimoroma4/selgen1/vhdlams) - gedit (on babydugongo.roma3.infn.it)
                                                                                                                                  _ = X
    Edit View Search Tools Documents Help
             10
New Open
                   Print...
                           Undo Redo | Cut Copy Paste |
 vhdl.vhms 💥
     ncmp EN
                  : out std_logic;
     nfired read : OUT std logic vector(127 downto 0)
end selgen1;
architecture vhdlams of selgenl is
  -- staircase generation constants ------
   quantity vpos across ipos through Vsc pos to Vrefanalog;
   quantity vneg across ineg through Vsc neg to Vrefanalog;
   quantity vmid across imid through Vsc mid to Vrefanalog;
   constant NcycleDlySC:
                                natural := 0;
  constant NcycleStepSC:
                                natural := 10;
  constant NcycleAZ:
                                natural := 1;
  constant VstepSC:
                                voltage := 10.0e-3;
  constant NumStep:
                                real := 2.0;
  constant MiddleValue:
                                voltage := 1.0:
  constant T:
                                       := 100 ns;
  signal pulsepos:
                            voltage:= MiddleValue;
                            voltage: = MiddleValue;
  signal pulseneg:
                            voltage:= MiddleValue;
   signal Vrefec:
                                                                  01234567890123456789012345678901
                                std logic vector(127 downto ):=X"AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
   constant nVout2 pattern:
  constant num row:
                                NATURAL := 16:
                                      := 1 ns; -- era 4ns.
  constant novl:
  constant sample time:
                                TIME
                                        := 10 ns;
  constant reset time:
                                TIME
                                        := 10 ns;
  constant precharge time EC: TIME
                                        := 1 ns: -- era 8ns.
                                TIME
  constant sample time EC:
                                        := 3 ns; -- era 8ns.
  constant equilibrate time EC: TIME
                                        := 3 ns: -- era 8ns.
  constant read fired width:
                                TIME
                                        := precharge time EC+sample time EC+novl+equilibrate time EC;
  constant read fired period:
                               TIME
                                        := read fired width + novl ;
    constant integration time:
                                TIME
                                        := (num row*read fired period) + sample time + novl ;
  constant integration time:
                                TIME
                                        := 700 ns;
  un ciclo comprende almeno un sample time + i tempi per leggere tutte le righe!!!
                                                                                                              Ln 62, Col 100
                                                                                                                                  INS
```

Column readout timing simulation

Static RAMS usually work with a signal also 10 times lower!!

Power consumption summary (NO OPTIMIZATION AT ALL)

Pixel power consumption summary (pitch 25 μ m) = 335.2 -> 201.6 mW/cm*2

Integration time	500 nS	5 μS	
Analog layer	1.093 μW	1.070 μW	
Discriminator	1 μW	190 nW	
Offset compensation	2.25 nW	0.25 nW	

No power cut

End of Column digital readout power consumption summary (111MHz)

# Column	1	400 column => 1 cm 25 μm pitch
EC readout	36.7 μW	14.68 mW
Bitline	10.8 μW	4.32 mW
Pixel output buffers	6.7 μW *	2.68 mW

* All output buffers in the column

End of column analog readout power consumption to be evaluated.

Order of magnitude lower than the analog one due to the sparsified readout!

Conclusions:

What, if any, of this work could be useful in the framwrork of the ALICE ITS upgrade project?

- known-how?
 - ideas?
- experience in testing?