Evidenza del decadimento del bosone di Higgs in muoni con l'esperimento CMS

arXiv:2009.04363 CERN-EP-2020-164 Submitted to JHEP

> Paolo Azzurri – INFN Pisa 10 Novembre 2020

75M 3D camera taking 40M frames/sec

P.Azzurri - Higgs to muons

Tracciatore interno

1997-2007 ~ 5 anni di R & D ~ 5 anni di costruzione

a Pisa

Inserimento in CMS Dic 2007

Nuovo rivelatore a pixel (2017)

- Quattro punti per ogni traccia
- Più vicino al fascio (2.8 cm)
- Più leggero
- Efficiente fino a L = 2.2-2.5 cm⁻²s⁻¹
 Maggiore efficienza tracciatura
 Migliore b-tagging
 Migliore risoluzione High Level Trigger

- Costruiti in Italia 15% dei moduli del barrel
- Pisa ha testato tutti questi moduli
- Pisa ha contribuito allo sviluppo del processo di bump-bonding di una delle ditte

Fase-2 upgrade tracciatore di CMS

- Nuovo tracciatore (200 m² pixel e strip) da sostituire completamente
 - Capace di sostenere L=7 10³⁴ cm⁻² s⁻¹ e 4000 fb⁻¹
 - Capace di fornire tracce p_t > 2-3 GeV ad ogni collisione per trigger livello 1
 - Estensione fino a $|\eta| = 4$

- Sviluppo e costruzione meccanica barrel rivelatore a pixel
- Sviluppo sensori a pixel

A Pisa (ora – 2026)

Test di 2000 moduli Outer Tracker e integrazione su meccanica Sviluppo hardware e firmware schede di acquisizione e ricostruzione tracce «online» (Trigger livello 1)

Particles through CMS slice

CMS Run2 data

Higgs : dalla scoperta ad oggi

Produzione e decadimento

Decadimenti in fermioni : $\tau \tau$ bb

Accoppiamenti verificati

Proprietà misurate

Most recent CMS Higgs boson results combination

pp@13TeV 2016 (36/fb)

Combined measurements of Higgs boson couplings <u>Eur. Phys. J. C 79 (2019) 421</u>

Other measured properties

Quantum numbers

- C=+1 (γγ)
- J^P= 0+ from angular analysis of $H \rightarrow 4\ell$

 $\Gamma_{\rm H}$ =3.2+2.8-2.2 MeV (off shell 4 ℓ) arXiv:1901.00174

m_H = **125.38** ± 0.14 GeV <u>arXiv:2002.06398</u>

 \Rightarrow reference mass value used for the analysis

High-hanging couplings

H→cc:

- Not extremely rare decay
- Huge bkg from QCD cc productions

Couples to 2nd fermion generation ?

H*→μμ* :

- Extremely rare decay

- Large but not huge bkg from DY/EW $\mu\mu$ productions

$H \rightarrow \mu \mu$: gli stati finali da cercare

Panoramica dell'analisi CMS

- ZH: 2μ + 2μ or 2e
- Veto ttH

events with no extra leptons

Strategia generale

Data-Driven

Train signal v/s bkg. multivariate classifier

• Exploit information of the event wih input variables that are <u>not</u> correlated with $m_{\mu\mu}$

Divide events into categories based on the classifier output

 Several subcategories with varying signal purity

Fit the $m_{\mu\mu}$ distribution in each subcategory to extract the signal

- Signal and background models are parametric functions
- Data-driven background predictions

MC-based

VBF channel

Train signal v/s bkg. multivariate classifier

• Exploit full information of the event including $m_{\mu\mu}$

Define Signal and Control Regions

- 115 < m_{μμ} < 135 GeV
- m_{µµ} [110, 115] or [135, 150]

Fit the MVA output distribution in both regions to extract the signal

 Signal and background modeled with Monte Carlo

16

Eventi inclusivi (ggH) $H \rightarrow \mu\mu$

CMS Experiment at the LHC, CERN Data recorded: 2018-Sep-30 16:00:48.744704 GMT Run / Event / LS: 323755 / 1382838897 / 755

 $m_{\mu\mu}$ = 125.46 ±1.13 GeV. No additional jets with pT> 25 GeV or leptons (electrons or muons) with pT> 20 GeV are present in this event.

Analisi degli eventi inclusivi

Signal characterized by a sharp dimuon mass peak at 125 GeV $m_{\mu\mu}$ resolution plays a defining role in determining analysis sensitivity

Single muon trigger p_T> 24 (27) GeV in 2016,2018 (2017) data Offline selection

- one muon with $p_T > 26$ (29) GeV
- opposite sign muon p_T> 20

All muons $|\eta| < 2.4 : p_T$ resolution

- 1-2% in barrel region (|η| < 0.9)
- 2-3.5% in endcaps (|η| > 1.2)

FSR photon identification & recovery:

- 3% increase in signal acceptance
- 2% improvement in mass resolution

Categorizzazione eventi inclusivi

137 fb⁻¹ (13 TeV)

BDT classifier inputs related to dimuon system :

p_T(μμ) & η(μμ), decay angles: φ_{CS}, cosθ_{CS}
 η(μ), p_T (μ)/mμμ

inputs related to add jets activity

p_T, η of the leading jet
 With one jet : Δη(H, j) , Δφ(H, j)
 With two or more jets :

min- $\Delta\eta(H, j)$, min- $\Delta\varphi(H, j)$, mjj, $\Delta\eta jj$, $\Delta\varphi jj$

HWHM

(GeV)

Events with better $\Delta m_{\mu\mu}$ go to high BDT output $1/\sigma(m_{\mu\mu})$ weight applied for signal training

Other

(%)

ggi i DD i odiput

Divide in 5 categories and fit $m_{\mu\mu}$ distributions

ggH-cat1	268	93.7	2.9	3.4	2.12	86 360	86 632	0.20	0.60
ggH-cat2	312	93.5	3.4	3.1	1.75	46 3 50	46 393	0.46	0.98
ggH-cat3	131	93.2	4.0	2.8	1.60	12660	12738	0.70	0.80
ggH-cat4	126	91.5	5.5	3.0	1.47	8260	8377	1.03	0.96
ggH-cat5	53.8	83.5	14.3	2.2	1.50	1680	1711	2.16	0.91

Bkg.

@HWHM

ggH

(%)

VBF

(%)

Event

category

Total

signal

S/(S+B) (%)

@HWHM

Data

@HWHM

 S/\sqrt{B}

@HWHM

Analisi degli eventi inclusivi

Fit of dimuon mass distribution with core PDF shape x transfer functionsdiscrete profiling of 3 core functions x 2nd/3rd order polynomialarXiv:1506.01010(arXiv:1408.6865)

Obs (exp) significance : 1.0 (1.6) σ Signal Strength $\mu = \sigma / \sigma_{SM} = 0.63 + 0.65 - 0.64$

EventittH (\rightarrow bb qq e $\nu \mu\mu$)

 $m_{\mu\mu}$ = 125.30 ±1.22 GeV. One of the two top quarks produces an electron (green line), and a neutrino that yields missing transverse energy (pink arrow). The other top quark candidate decays into jets (orange cones).

INFN Pisa - 10 Nov 2020

Analisi dei candidati ttH

(q)	Observable	tīH hadronic	tīH leptonic
	Number of b quark jets	>0 medium	or >1 loose b-tagged jets
	Number of leptons (N($\ell = \mu, e$))	=2	=3 or 4
τ μ ⁻	Lepton charge $(q(\ell))$	$\sum q(\ell) = 0$	$N(\ell) = 3 (4) \rightarrow \sum q(\ell) = \pm 1 (0)$
	Jet multiplicity ($p_T > 25 \text{ GeV}$, $ \eta < 4.7$)	≥ 3	≥ 2
200000000	Leading jet $p_{\rm T}$	>50 GeV	> 35 GeV
$t \qquad \mu^+$	Z boson veto	—	$ m_{\ell\ell}-m_Z >10{ m GeV}$
l	Low-mass resonance veto	—	$m_{\ell\ell} > 12{ m GeV}$
b ν	Jet triplet mass	$100 < m_{jjj} < 300 {\rm GeV}$	

Two dedicated BDT discriminant used to separate major bkgs

- ttZ for leptonic channels \rightarrow 2 categories
- dileptonic tt for hadronic channel \rightarrow 3 categories

Obs (exp) significance : $1.2 (0.5)\sigma$ Signal Strength 2.32+2.27-1.95

0.6

CAT2

Eventi VH (ZH \rightarrow ee $\mu\mu$)

 $m_{\mu\mu}$ = 125.69 ±1.55 GeV. The Z boson candidate decays into a pair of electrons indicated by the solid green lines. No additional leptons (electrons or muons) with *p*T > 20 GeV or jets with *p*T > 25 GeV are present in the event.

INFN Pisa - 10 Nov 2020

P.Azzurri - Higgs to muons

Analisi dei candidati VH

Higgs decays to muons, + at least one charged lepton

Eventi VBF

CMS Experiment at the LHC, CERN Data recorded: 2018-Oct-03 01:19:17.320393 GMT

 $m_{\mu\mu}$ = 125.01 ±1.83 GeV. The VBF-jet candidates are depicted by the orange cones whose invariant mass (*m*jj) is 2.19 TeV. No additional leptons (electrons or muons) with pT > 20GeV are present in the event.

Un salto indietro nel tempo VBF Z $\rightarrow \mu\mu$ 2011 pp @7TeV

 $m_{\mu\mu}$ = 90.2 GeV. The VBF-jet candidates are depicted by the green cones, whose invariant mass (*m*jj) is 1.39 TeV.

$\mathsf{VBF}\,\mathsf{Z} \to \ell\ell$

Eur. Phys. J. C 75 (2015) 66

J. High Energy Phys. 10 (2013) 062

The first measurement of the electroweak production cross section of a Z boson with two jets (Zjj) in pp collisions at sqrt(s) = 7 TeV is presented, based on a data sample recorded by the CMS experiment at the LHC with an integrated luminosity of 5 inverse femtobarns ... These results establish an important foundation for the more general study of vector boson fusion processes, of relevance for Higgs boson searches and for measurements of electroweak gauge couplings and vector boson scattering.

Summary of VBF/VBS results

$VBFH \rightarrow \mu\mu$

- Highest achievable signal purity but with low event statistics (~10)
 - Good simulation precision in modelling the relevant backgrounds → signal extraction method fully based on Monte Carlo

→ 20% improvement wrt data-driven fit

Observable	VBF-SB	VBF-SR
Number of loose (medium) b-tagged jets	$\leq 1 (0)$	0)
Number of selected muons	=2	
Number of selected electrons	=0	
Jet multiplicity ($p_T > 25 \text{ GeV}$, $ \eta < 4.7$)	≥ 2	
Leading jet $p_{\rm T}$	\geq 35 G	GeV
Dijet mass (m_{ij})	$\geq 400 \mathrm{G}$	GeV
Pseudorapidity separation ($ \Delta \eta_{ii} $)	≥ 2.5	5
Dimuon invariant mass	$110 < m_{\mu\mu} < 115 \text{GeV}$	$115 < m_{\mu\mu} < 135 \text{GeV}$
	or $135 < m_{\mu\mu} < 150 \text{GeV}$	• •

Variables used and/or studied in the VBF Z measurements

Some peculiar inputs :

- (soft) track-jet activity in the rapidity gap
- quark-gluon jet likelihood

MVA classifier includes $m_{\mu\mu}$!

- $m(\mu\mu)$, $\Delta m(\mu\mu)_{rel}$, $\Delta m(\mu\mu)$ the dimuon mass and the relative and absolute mass resolutions
- m(jj), $\log m(jj)$ the dijet mass and its logarithm
- $R(p_T)$

Z*

- $\Delta \eta(jj)$ the pseudorapidity difference between the 2 selected jets
- N_5^{soft} # soft jet with $p_T > 5 \text{ GeV}$
- $\min_j \Delta \eta(\mu\mu,j)$ the minimum pseudorapidity difference between a jet and the dimuon system
- $p_T(\mu\mu)$, $\log p_T(\mu\mu)$, $\eta(\mu\mu)$ dimuon 4-vector components
- $p_T(j_1), p_T(j_2), \eta(j_1), \eta(j_2), \phi(j_1), \phi(j_2)$ jets' 4-vectors components
- $qgl(j_1)$, $qgl(j_2)$ the the quark-gluon likelihood discriminators for the selected jets.

VBF $H \rightarrow \mu\mu$

$n_{\mu\mu} \rightarrow b$	[110, 115]	or [135,	150] GeV
----------------------------	------------	----------	----------

DNN bin	Total signal	VBF (%)	ggH (%)	Bkg. $\pm \Delta B$	Data	S/(S+B) (%)	S/\sqrt{B}
1–3	19.5	30	70	8890 ± 67	8815	0.22	0.21
4–6	11.6	57	43	394 ± 8	388	2.86	0.58
7–9	8.43	73	27	103 ± 4	121	7.56	0.83
10	2.30	85	15	15.1 ± 1.4	18	13.2	0.59
11	2.15	88	12	9.1 ± 1.2	10	19.1	0.71
12	2.10	87	13	5.8 ± 1.1	6	26.6	0.87
13	1.87	94	6	2.6 ± 0.9	7	41.8	1.16

Obs (exp) significance : 2.4 (1.8) σ

Signal Strength $\mu = \sigma / \sigma_{SM} = 1.36 + 0.69 - 0.61$

Risultati combinati : p-value vs m_H

Production category	Observed (expected) signif.	Observed (expected) UL on μ
VBF	2.40 (1.77)	2.57 (1.22)
ggH	0.99 (1.56)	1.77 (1.28)
tīH	1.20 (0.54)	6.48 (4.20)
VH	2.02 (0.42)	10.8 (5.13)
Combined $\sqrt{s} = 13 \text{ TeV}$	2.95 (2.46)	1.94 (0.82)
Combined $\sqrt{s} = 7, 8, 13 \text{ TeV}$	2.98 (2.48)	1.93 (0.81)

Obs. (Exp.) Significance **3.0** σ (2.5 σ) at 125.38 GeV

Risultati combinati

CMS

35.9-137 fb⁻¹ (13 TeV)

Dove si sono prodotti i risultati

il Tier-2 CMS a Pisa ha avuto un ruolo essenziale in questa e in tante altre analisi dei dati CMS

Le parti dell'analisi $H \rightarrow \mu \mu$ svolte a Pisa sono state interamente realizzate sulle risorse di calcolo locali

Evidenza del decadimento del bosone di Higgs in muoni !

- Prima prova dell'accoppiamento ai fermioni più leggeri della seconda generazione : un altra conferma delle predizioni del Modello Standard.
- Analisi CMS condotta da *Pisa* e UCSD, MIT, Caltech, Hamburg, UFlorida, Purdue
- *Miglioramento molto sostanziale delle prestazioni dell'analisi* rispetto a risultati e proiezioni precedenti
- Questa misura, e tante altre analisi di LHC, sono chiaramente *limitate dalla statistica*
- I dati del Run3 (e HL) *miglioreranno* queste misure, e ne porteranno a galla altre. Sia grazie alla luminosità che all'evoluzione delle prestazioni delle analisi.

Backup

Selezione degli eventi

Observable	VB	F-SB		VBF-SR	
Number of loose (medium) b-tagged jets			≤1 (0)		
Number of selected muons			=2		
Number of selected electrons			=0		
Jet multiplicity ($p_{\rm T} > 25 {\rm GeV}$, $ \eta < 4.7$)			≥ 2		
Leading jet $p_{\rm T}$		\geq	<u>></u> 35 GeV		
Dijet mass (m_{jj})		\geq	400 GeV		
Pseudorapidity separation ($ \Delta \eta_{jj} $)			≥ 2.5		
Dimuon invariant mass	$110 < m_{\mu\mu}$	$_{t}$ < 115 Ge	eV 115	$< m_{\mu\mu} < 13$	35 GeV
	or $135 < m$	$_{\mu\mu} < 150 {\rm C}$	GeV		
		~			
Observable		Selection			
Number of loose (medium) b-tagged jets		$\leq 1 (0)$			
Number of selected muons		=2			
VBE selection vote		=0			
mii <	< 400 GeV or 1/	$ n_{\text{jets}} \le 2.5 c$	or $n_{\mathrm{T}}(\mathbf{i}_1) < 1$	35 GeV	
			- F1()1) < ·		
Observable		WH le	ptonic	ZH lej	otonic
		μμμ	μµe	4μ	2µ2e
Number of loose (medium) b-tage	ed jets	$\leq 1 (0)$	$\leq 1 (0)$	$\leq 1 (0)$	$\leq 1 (0)$
Number of selected muons		=3	=2	=4	=2
Number of selected electrons		=0	=1	=0	=2
Lepton charge $(q(\ell))$		$\sum q(\ell)$	$=\pm 1$	$\sum q(\ell$) = 0
Low-mass resonance veto			$m_{\ell\ell} >$	12 GeV	
$N(\mu^+\mu^-)$ pairs with $110 < m_{\mu\mu} < m_{\mu\mu}$	150 GeV	≥ 1	=1	≥ 1	=1
$N(\mu^+\mu^-)$ pairs with $ m_{\mu\mu} - m_Z <$	< 10 GeV	=0	=0	=1	=0
$N(e^+e^-)$ pairs with $ m_{ee} - m_Z <$	20 GeV	=0	=0	=1	=1

Selezione degli eventi

Event	Total	WH	qqZH	ggZH	ttH+tH	HWHM	Bkg. fit	Bkg.	Data	S/(S+B) (%)	S/\sqrt{B}
category	signal	(%)	(%)	(%)	(%)	(GeV)	function	@HWHM	@HWHM	@HWHM	@HWHM
WH-cat1	0.82	76.2	9.6	1.6	12.6	2.00	$BWZ\gamma$	32.0	34	1.54	0.09
WH-cat2	1.72	80.1	9.1	1.5	9.3	1.80	BWZ	23.1	27	4.50	0.23
WH-cat3	1.14	85.7	6.7	1.8	4.8	1.90	BWZ	5.48	4	12.6	0.35
ZH-cat1	0.11		82.8	17.2		2.07	BWZ	2.05	4	3.29	0.05
ZH-cat2	0.31	—	79.6	20.4	—	1.80	BWZ	2.19	4	8.98	0.14

Event	Total	tīH	ggH	VH	Other	HWHM	Bkg. fit	Bkg.	Data	S/(S+B) (%)	S/\sqrt{B}
category	signal	(%)	(%)	(%)	(%)	(GeV)	function	@HWHM	@HWHM	@HWHM	@HWHM
ttHhad-cat1	6.87	32.3	40.3	17.2	10.2	1.85	Bern(2)	4298	4251	1.07	0.07
tīHhad-cat2	1.62	84.3	3.8	5.6	6.2	1.81	Bern(2)	82.0	89	1.32	0.12
ttHhad-cat3	1.33	94.0	0.3	1.3	4.4	1.80	S-Exp	12.3	12	6.87	0.26
ttHlep-cat1	1.06	85.8		4.7	9.5	1.92	Exp	9.00	13	7.09	0.22
ttHlep-cat2	0.99	94.7		1.0	4.3	1.75	Exp	2.08	4	24.5	0.47

Composizione

Purezza, significanza

VBF DNN per anno

VBF Sideband vs Signal

Risultati

Simulazioni

Process	Generator (Perturbative order)	Parton shower	Cross section	Additional corrections
ggH	MADGRAPH5_aMC@NLO (NLO QCD)	PYTHIA	N3LO QCD, NLO EW	$p_{\rm T}({\rm H})$ from NNLOPS
VBF	POWHEG (NLO QCD)	PYTHIA dipole shower	NNLO QCD, NLO EW	
$qq \to VH$	POWHEG (NLO QCD)	PYTHIA	NNLO QCD, NLO EW	—
$gg \to ZH$	powheg (LO)	PYTHIA	NNLO QCD, NLO EW	—
tīH	POWHEG (NLO QCD)	PYTHIA	NLO QCD, NLO EW	—
bbH	POWHEG (NLO QCD)	PYTHIA	NLO QCD	—
tHq	MadGraph5_amc@nlo (LO)	PYTHIA	NLO QCD	—
tHW	MadGraph5_amc@nlo (LO)	PYTHIA	NLO QCD	—
Drell–Yan	MADGRAPH5_aMC@NLO (NLO QCD)	PYTHIA	NNLO QCD, NLO EW	
Zjj-EW	MadGraph5_amc@nlo (LO)	HERWIG++/HERWIG 7	LO	—
tī	POWHEG (NLO QCD)	PYTHIA	NNLO QCD	—
Single top quark	powheg/MadGraph5_amc@nlo (NLO QCD)	PYTHIA	NLO QCD	
Diboson (VV)	powheg/MadGraph5_amc@nlo (NLO QCD)	PYTHIA	NLO QCD	NNLO/NLO K factors
$gg \to ZZ$	MCFM (LO)	PYTHIA	LO	NNLO/LO K factors
tīV, tīVV	MADGRAPH5_aMC@NLO (NLO QCD)	PYTHIA	NLO QCD	
Triboson (VVV)	MADGRAPH5_aMC@NLO (NLO QCD)	PYTHIA	NLO QCD	—

Sistematiche

Source of uncertainty	Categories and processes	Туре	Correlation vs cat.	Correlation vs year
	Experin	nental uncertainties		
Integrated luminosity	Sig. in all cat., bkg. in VBF	Rate	Correlated	Partial
Muon efficiency	Sig. in all cat., bkg. in VBF	Rate	Correlated	Correlated
Electron efficiency	Sig. in ttH and VH	Rate	Correlated	Correlated
Muon trigger	Sig. in all cat., bkg. in VBF	Rate	Correlated	Correlated
Muon $p_{\rm T}$ scale	Sig. in all cat., bkg. in VBF	Shape in VBF, rate in others	Correlated	Correlated
Nonprompt leptons	Sig. in ttH and VH	Rate	Correlated	Correlated
Pileup model	Sig. in all cat., bkg. in VBF	Shape in VBF, rate in others	Correlated	Uncorrelated
L1 inefficiency	Sig. in all cat., bkg. in VBF	Shape in VBF, rate in others	Correlated	Uncorrelated
B-tagging efficiency	Sig. in all cat., bkg. in VBF	Shape in VBF, rate in others	Correlated	Correlated
Jet energy scale	Sig. in all cat., bkg. in VBF	Shape in VBF, rate in others	Correlated	Partial
Jet energy resolution	Sig. in all cat., bkg. in VBF	Shape in VBF, rate in others	Correlated	Uncorrelated
	Theore	tical uncertainties		
$\mu_{\rm R}$ and $\mu_{\rm F}$ for ggH	ggH in all cat.	Rate	Correlated	Correlated
$\mu_{\rm R}$ and $\mu_{\rm F}$ for VBF	VBF in all cat.	Rate	Correlated	Correlated
$\mu_{\rm R}$ and $\mu_{\rm F}$ for t $\bar{\rm t}$ H	tīH in all cat.	Rate	Correlated	Correlated
$\mu_{\rm R}$ and $\mu_{\rm F}$ for VH	VH in all cat.	Rate	Correlated	Correlated
PDF for ggH	ggH in all cat.	Rate	Correlated	Correlated
PDF for VBF	VBF in all cat.	Rate	Correlated	Correlated
PDF for t t H	tīH in all cat.	Rate	Correlated	Correlated
PDF for VH	VH in all cat.	Rate	Correlated	Correlated
ggH accept. vs $(p_T(H), N_i, m_{ii})$	ggH in all cat.	Shape in VBF, rate in others	Correlated	Correlated
VBF accept. vs $(p_T(H), N_i, m_{ii})$	VBF in all cat.	Shape in VBF, rate in others	Correlated	Correlated
ttH accept. from $\mu_{\rm R}$ and $\mu_{\rm F}$	tīH in all cat.	Rate	Correlated	Correlated
VH accept. from $\mu_{\rm R}$ and $\mu_{\rm F}$	VH in all cat.	Rate	Correlated	Correlated
tīH accept. from PDF	tīH in all cat.	Rate	Correlated	Correlated
VH accept. from PDF	VH in all cat.	Rate	Correlated	Correlated
PYTHIA ISR and FSR	Sig. in all cat., bkg. in VBF	Shape in VBF, rate in others	Correlated	Correlated
PYTHIA vs HERWIG)	VBF and Zjj-EW in VBF cat.	Shape	Correlated	Correlated
$\mu_{\rm R}$ and $\mu_{\rm F}$ for Drell–Yan	VBF cat.	Shape	Correlated	Correlated
$\mu_{\rm R}$ and $\mu_{\rm F}$ for Zjj-EW	VBF cat.	Shape	Correlated	Correlated
$\mu_{\rm R}$ and $\mu_{\rm F}$ for top bkgs.	VBF cat.	Shape	Correlated	Correlated
$\mu_{\rm R}$ and $\mu_{\rm F}$ for diboson	VBF cat.	Shape	Correlated	Correlated
PDF for Drell–Yan	VBF cat.	Shape	Correlated	Correlated
PDF for Zjj-EW	VBF cat.	Shape	Correlated	Correlated
PDF for top bkgs.	VBF cat.	Shape	Correlated	Correlated
PDF for dibosons	VBF cat.	Shape	Correlated	Correlated
Size of simulated samples	VBE cat	Bin-by-bin	_	Uncorrelated

Sistematiche

Uncertainty source	$\Delta \mu$		
Post-fit uncertainty	+0.44	-0.42	
Statistical uncertainty	+0.41	-0.40	
Systematic uncertainty	+0.17	-0.16	
Experimental uncertainty	+0.12	-0.11	
Theoretical uncertainty	+0.10	-0.11	
Size of simulated samples	+0.07	-0.06	