Statistical considerations for the next data taking at CNAO

Giuseppe Battistoni, Aafke Kraan, Silvia Muraro INFN Milano + INFN Pisa

Introduction

- Next data taking at CNAO is not a physics run, but we might as well try to do tests while taking useful data
- One carbon energy (200 MeV/u) and two targets
- There are several questions to answer before going to CNAO:
 - How many primaries do we expect to use for the next physics run?
 - How to divide them over the 2 targets? Should we collect the same amount of statistics for both targets? Not a priori clear, since targets have different densities and cross sections, and cross section on H is obtained through subtraction
- Today's presentation: make some statistical considerations (no efficiencies, no systematic errors, no background, etc) in order to optimize data taking at CNAO with 2 targets, keeping in mind:
 - The cross section subtraction technique
 - The limited amount of time available at CNAO
- Outline:
 - Statistical considerations (analytical)
 - Check their correctness with MC
 - Some plots of what's we can expect at CNAO
 - Conclusion

Reminder: cross section formulas

- Goal of FOOT: measure (single and double differential) cross sections of heavy ion beams (C, O) on tissue like targets (H, C, O)
- Reminder: cross section for production of fragments *i* on target (neglecting efficiency factors)

$$\sigma_{i,t} = \frac{Y_{i,t}}{N_p} \frac{A_t}{N_A \rho_t \delta_t} \quad (1)$$

- This CNAO data taking:
 - C beam on C target
 - C beam on C₂H₄ target

With:

$$\sigma_{i,t}$$
 = cross section to produce fragment i on target t [cm²]
 $Y_{i,t}$ = Number of fragments of type i []
 A_t = molecular mass of target [g mol⁻¹]
 N_p = number of primary particles []
 N_A = Avogado's number [mol⁻¹]
 ρ_t = density of target [g cm⁻³]
 δ_t = thickness of target [cm⁻¹]

$$\sigma_{i,C} = \frac{Y_{i,C}}{N_p} \frac{A_C}{N_A \rho_C \delta_C} \text{ (1a)} \qquad \sigma_{i,C_2H_4} = \frac{Y_{i,C_2H_4}}{N_p} \frac{A_{C_2H_4}}{N_A \rho_{C_2H_4} \delta_{C_2H_4}} \text{ (1b)} \qquad \sigma_{i,H} = \frac{1}{4} \left(\sigma_{i,C_2H_4} - 2\sigma_{i,C} \right) \text{ (2)}$$

- For the targets inherited from GSI:
 - $\delta_C = \delta_{C_2H_4} = 5 \text{ mm}, \quad \rho_C = 1.83 \text{ g/cm}^3, \quad \rho_{C_2H_4} = 0.94 \text{ g/cm}^3, \quad A_C \sim 12 \text{ g mol}^{-1}, \quad A_{C_2H_4} \sim 28 \text{ g mol}^{-1}$

Reminder: cross section formulas

Reminder: statistical errors on cross section for production of fragment *i* on target (neglecting efficiency factors). Essentially they are only determined by the yield of the detected fragments

$$\Delta \sigma_{i,t} = \frac{\sqrt{Y_{i,t}}}{N_p} \frac{A_t}{N_A \rho_t \delta_t}$$
(3)

- This CNAO data taking:
 - C beam on C target
 - C beam on C₂H₄ target

With:

$$\sigma_{i,t}$$
 = cross section to produce fragment i on target t [cm²]
 $Y_{i,t}$ = Number of fragments of type i []
 A_t = molecular mass of target [g mol⁻¹]
 N_p = number of primary particles []
 N_A = Avogado's number [mol⁻¹]
 ρ_t = density of target [g cm⁻³]
 δ_t = thickness of target [cm⁻¹]

$$\Delta \sigma_{i,C} = \frac{\sqrt{Y_{i,C}}}{N_p} \frac{A_C}{N_A \rho_C \delta_C} \text{(3a)} \quad \Delta \sigma_{i,C_2H_4} = \frac{\sqrt{Y_{i,C_2H_4}}}{N_p} \frac{A_{C_2H_4}}{N_A \rho_{C_2H_4} \delta_{C_2H_4}} \text{(3b)} \quad \Delta \sigma_{i,H} = \frac{1}{4} \sqrt{(\Delta \sigma_{i,C_2H_4})^2 + 4(\Delta \sigma_{i,C})^2} \text{(4)}$$

- For the targets inherited from GSI:
 - $\delta_C = \delta_{C_2H_4} = 5 \text{ mm}, \quad \rho_C = 1.83 \text{ g/cm}^3, \quad \rho_{C_2H_4} = 0.94 \text{ g/cm}^3, \quad A_C \sim 12 \text{ g mol}^{-1}, \quad A_{C_2H_4} \sim 28 \text{ g mol}^{-1}$

Note that targets have the same thickness \rightarrow for the same nr. of primaries, the measurement with the C₂H₄ target, having a density smaller by a factor of ~2 w.r.t. the carbon target, will have a larger relative statistical error

What errors do we expect?

- What can we expect for $\Delta \sigma_{i,H}$, $\Delta \sigma_{i,C}$ and $\Delta \sigma_{i,C_2H_4}$ if the same number of primaries is used on both targets? (efficiencies same)
- Using 200 MeV/u carbon ions, assuming similar cross sections, we estimate for fragment type *i* for our targets:

$$\frac{Y_{i,C}}{Y_{i,C_{2}H_{4}}} = \frac{\sigma_{i,C}}{\sigma_{i,C_{2}H_{4}}} \frac{\rho_{C}}{\rho_{C_{2}H_{4}}} \frac{A_{C_{2}H_{4}}}{A_{C}}$$
(5)

$$\frac{Y_{i,C}}{Y_{i,C_{2}H_{4}}} \approx 4.54 \frac{\sigma_{i,C}}{\sigma_{i,C_{2}H_{4}}} \approx 1.4$$
(7)

$$\Delta \sigma_{i,H} = \frac{1}{4} \sqrt{(\Delta \sigma_{i,C_{2}H_{4}})^{2} + 4(\Delta \sigma_{i,C})^{2}}$$
(9)

$$= \frac{1}{4} \sqrt{(3.8\Delta \sigma_{i,C})^{2} + 4\Delta \sigma_{i,C}^{2}}$$
(9)

$$\approx \frac{1}{4} \sqrt{18.8} \Delta \sigma_{i,C} \Delta \sigma_{i,C} \approx 1.08 \Delta \sigma_{i,C}$$
(9)

$$\Delta \sigma_{i,C} = \sqrt{\frac{Y_{i,C_{2}H_{4}}}{Y_{i,C}}} \frac{\rho_{C}A_{C,H_{4}}}{\rho_{C_{2}H_{4}}A_{C}} \approx \sqrt{\frac{1}{1.4}} 4.54 \approx 3.84$$
(8)

What errors do we expect?

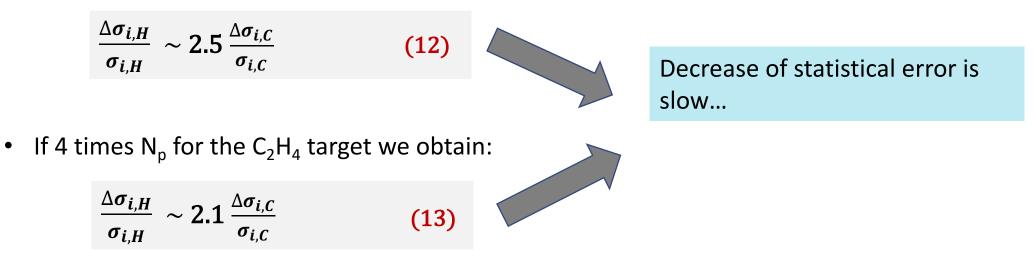
• But actually, what matters are the relative errors...

$$\frac{\sigma_{i,H}}{\sigma_{i,H}} \qquad \frac{\Delta \sigma_{i,C}}{\sigma_{i,C}}$$

$$\sigma_{i,H} = \frac{1}{4} \left(\sigma_{i,C_{2}H_{4}} - 2\sigma_{i,C} \right) = \frac{1}{4} \sigma_{i,C} \left(\frac{\sigma_{i,C_{2}H_{4}}}{\sigma_{i,C}} - 2 \right) \sim \frac{1}{4} \sigma_{i,C} \left(\frac{1}{0.3} - 2 \right) \sim 0.33 \sigma_{i,C}$$

$$\Delta \sigma_{i,H} \approx 1.08 \Delta \sigma_{i,C} \tag{9}$$

$$\frac{\Delta \sigma_{i,H}}{\sigma_{i,H}} \sim \frac{1.08}{0.33} \frac{\Delta \sigma_{i,C}}{\sigma_{i,C}} \sim 3.3 \frac{\Delta \sigma_{i,C}}{\sigma_{i,C}} \qquad (10)$$



For the same nr of primaries in both target runs, relative cross section error on H is > 3 times larger than that on C (the most accurate case)...

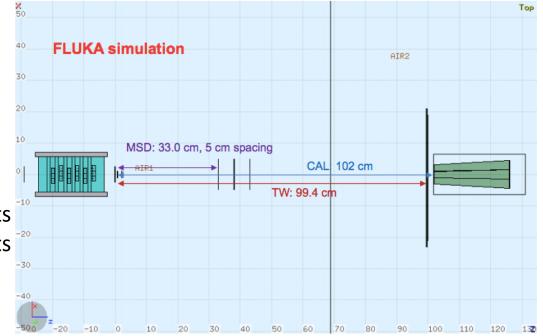
 Does it depend on i? (type of fragment?) → see slide 9 and further (MC)

What if we double the statistics of the C₂H₄ run?

• If doubling N_p for the C_2H_4 target w.r.t. C target, we obtain:

• In the case of $d\sigma/dE$ and $d\sigma/d\Omega$, the correct numerical factor of course depends on the actual value of $\frac{\sigma_{i,C_2H_4}}{\sigma_{i,C}}$ (or equivalently $\frac{Y_{i,C_2H_4}}{Y_{i,C}}$) in each ΔE , $\Delta \Omega$ bin for each secondary fragment type of interest, *i*

A factor 2 more for the C_2H_4 target than for C target the is the 'minimum' we should do (assuming same target thicknesses of 5 mm for now. We can also increase them if needed...)


Let's now try to confirm some of these considerations with MC and check behaviour of different fragments

MC files and software used

MC files from: /gpfs_data/local/foot/Simulation/CNAO2020

- 12C at 200 MeV/u on C
 - filename:12C_C_200.root
 - 284246 events on file
 - 5 mm
 - rho=1.83 g/cm3)
 - 10⁷ primaries
- 12C at 200 MeV/u on C2H4
 - Filename:
 - 12C_C2H4_200_1.root, 198215 events
 - 12C_C2H4_200_2.root, 197621 events
 - 5 mm
 - rho=0.94 g/cm3
 - 10⁷ primaries

Focus on what we can do only with SC and TOF-Wall (no mass discrimination)

To cross check formulas 5 and 7, analyzed yield for fragments of 200 MeV/u 12 C produced in C and C₂H₄ target (both with N_p=10⁷)

Z of fragment i	Y _{i,C}	Y_{i,C_2H_4}	$\frac{Y_{i,C}}{Y_{i,C_2H_4}}$
1	334288	207099	1.61
2	274852	197885	1.39
3	28158	22329	1.26
4	15405	13240	1.16
5	32617	26699	1.22
6	26183	26396	0.99 属

Starting with N_p=10⁷, how many have inelastic interactions?

- Carbon: about 6%
- Ethylene: about 4%

 $\frac{Y_{i,C}}{Y_{i,C_2H_4}} \approx 4.54 \frac{\sigma_{i,C}}{\sigma_{i,C_2H_4}} \approx 1.4$ (7)

Note that mostly ¹¹C (see backup for overview of produced isotopes), may be hard to distinguish from ¹²C primary

- Ratio between C yield and C₂H₄ yield varies with Z
- Goes down for heavier fragments

To cross check formula 6, converted fragment (from target) yields to cross sections with formula 1a and 1b for C and C_2H_4 , respectively

Z of fragment i	σ
	σ_{i,C_2H_4}
1	0.36
2	0.31
3	0.27
4	0.26
5	0.27
6	0.21

$$\frac{\sigma_{i,C}}{\sigma_{i,C_2H_4}} \approx 0.3$$
 (6)

- Cross section ratio $\frac{\sigma_{i,C}}{\sigma_{i,C_2H_4}}$ not constant
- Decreases for heavier fragments

To cross check formula 8, evaluated fragment yields and factors:

•

Z of fragment i	$\frac{\Delta \boldsymbol{\sigma}_{i,C_2H_4}}{\Delta \boldsymbol{\sigma}_{i,C}}$
1	3.57
2	3.85
3	4.04
4	4.21
5	4.11
6	4.56

$$\frac{\Delta \sigma_{i,C_2H_4}}{\Delta \sigma_{i,C}} = \sqrt{\frac{Y_{i,C_2H_4}}{Y_{i,C}}} \frac{\rho_C A_{C_2H_4}}{\rho_{C_2H_4}A_C} \approx \sqrt{\frac{1}{1.4}} 4.54 \approx 3.8 \quad (8)$$

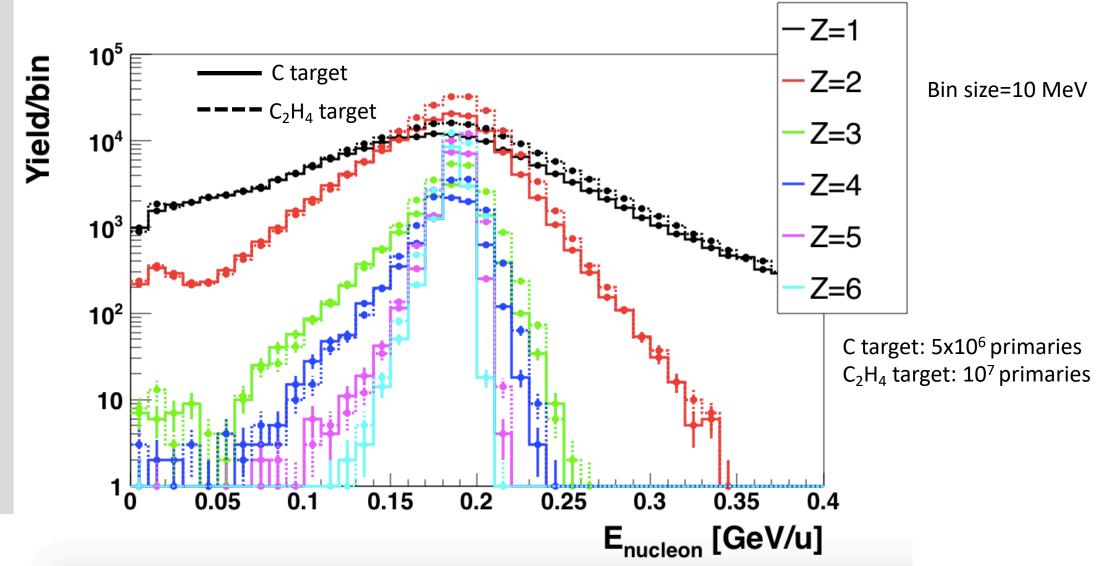
$$\frac{\Delta \sigma_{i,C_2H_4}}{\Delta \sigma_{i,C}} \text{ is not constant}$$
Increases for heavier fragments

To cross check formulas 9, 10 and 11, evaluated all statistical errors:

Z of fragment i	$rac{\Delta \sigma_{i,H}}{\sigma_{i,H}}$	$\frac{\Delta \boldsymbol{\sigma}_{i,C}}{\boldsymbol{\sigma}_{i,C}}$	$\frac{\Delta \sigma_{i,H}}{\sigma_{i,H}} / \frac{\Delta \sigma_{i,C}}{\sigma_{i,C}}$
1	0.87	0.17	5.0
2	0.65	0.18	3.4
3	1.68	0.60	2.8
4	1.97	0.81	2.4
5	1.47	0.55	2.7
6	1.19	0.62	1.9

$$\frac{\Delta \sigma_{i,H}}{\sigma_{i,H}} \sim \frac{1.08}{0.33} \frac{\Delta \sigma_{i,C}}{\sigma_{i,C}} \sim 3.3 \frac{\Delta \sigma_{i,C}}{\sigma_{i,C}}$$

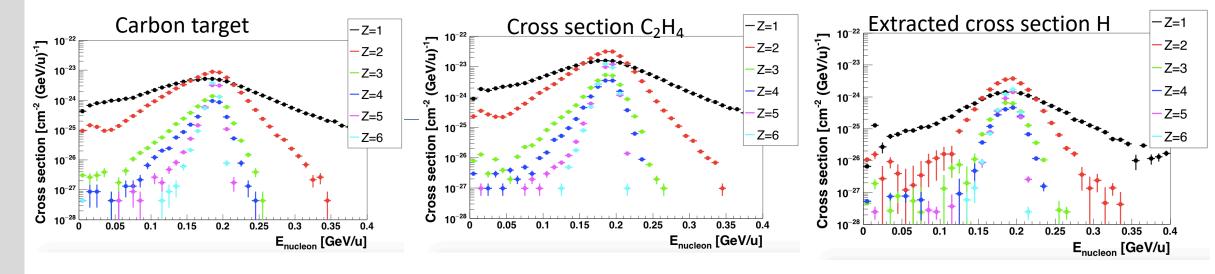
The relative error on cross section varies with Z


What do we expect at CNAO?

- Assume that we take data at low intensity: about 1000 primaries/s in the spill → given that the duty cycle is 50%, about 500 primaries/s
- Firing 10⁷ primaries would take 10⁷/500 s, i.e., 5.5 hours... which is long... (shift is about 8 hours)
- As said before (slide 7), run with C_2H_4 target with double number of primaries

N _p for C target	N_p for C_2H_4 target	Total estimated run time
107	2 x 10 ⁷	5.5+11=16.5 hours: no
5x10 ⁶	107	2.7+5.5~8.2 ≳ 8 hours: maybe
4x10 ⁶	8x10 ⁶	2.2+4.4~6.6 < 8 hours: ok

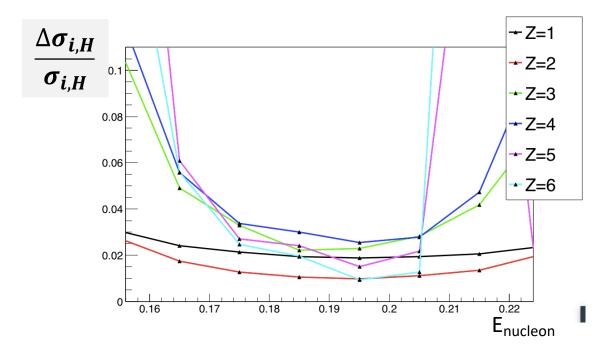
- What would be obtain with 5×10^6 primaries for C target and 10^7 primaries for C₂H₄ target ?
 - dN/dE (per nucleon)
 - $d\sigma/dE$ (per nucleon)
- Distinguish the fragments only in Z for now, MC truth


dN/dE MC truth: fragments from target

$d\sigma/E_{nucleon}$ for MC truth (fragments from target)

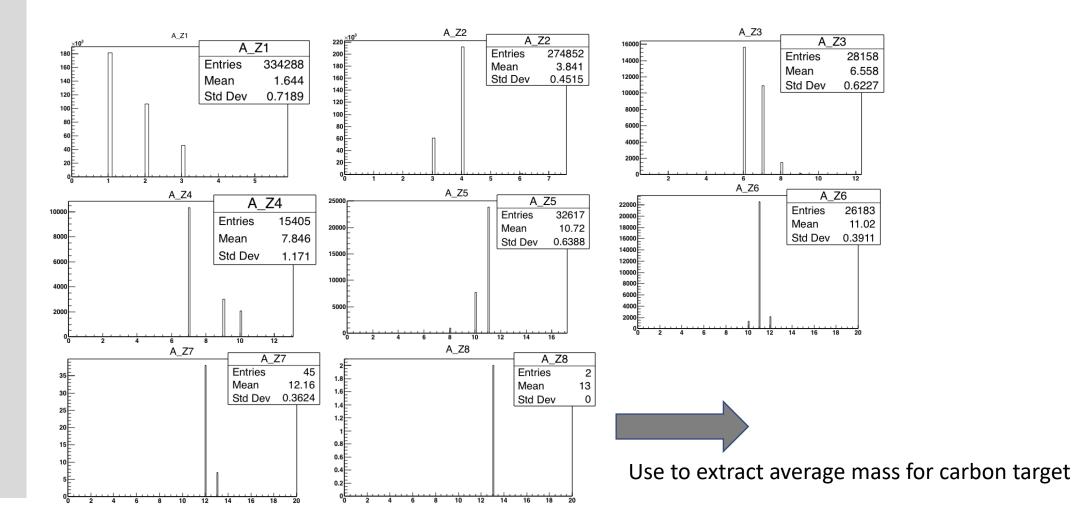
C target: $5x10^6$ primaries C_2H_4 target: 10^7 primaries

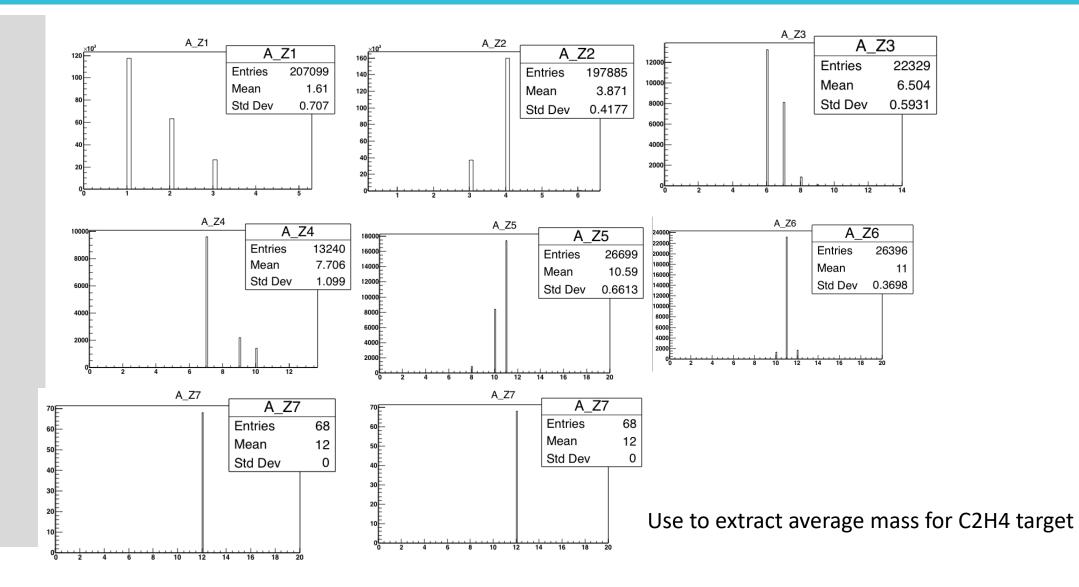
Applying the appropriate factors to translate yields into cross sections:


- Would be at the limits of run time (~8 hours)
- Still acceptable result with 5x10⁶ primaries for C target, and 10⁷ primaries for C₂H₄ target
- Errors: heavier fragments have large errors

What about the relative errors

No details... (apologies for the ugly plot), but we saw that:


- Largest relative errors are expected at higher Z: $Z \ge 3$
- Most problematic in less populated energy bins


Conclusions

- Some statistical considerations were made about the CNAO run
- We need more primaries for the C₂H₄ target than for the C target
- Given the slow decrease of the error on $\frac{\Delta \sigma_{i,H}}{\sigma_{i,H}}$, probably for a given energy we can point at n*10⁶ primaries of C (preferably with n not too far away from 5) and 2n*10⁶ for C₂H₄
- Showed some first plots of what can be expected at CNAO with n=5, which is at the limit of what we can get (~8 hours)
- Largest relative errors on cross sections for larger Z (say $Z \ge 3$)
- The present analysis is preliminary and there are other aspects in the overall aspect of measurement errors which are connected to the size of statistical sample. An example can be
 - The evaluation of background
 -

Mass isotopes for carbon target

Mass isotopes for C₂H₄ target

