

ALMA MATER STUDIORUM Università di Bologna

Neutrons @ FOOT

Cristian Massimi for INFN Bologna

Department of Physics and Astronomy

Outline

A close look up to the netron data in the literature

- Neutron production in THIN targets: cross sections, angular distribution, ... as input to MC
 - Proton-induced reactions: inclusive Vs exclusive cross section
 - Light-ion induced reactions
- Neutron production in THICK targets: comparison/benchmark with MC simulations
 - Proton- and Carbon-induced reactions on homogeneous target: measurement of secondary neutron yields
 - Proton- and Carbon-induced reactions on clinical phantom

Thin target, proton-induced reactions

K. Matsushita et al., Nuclear Physics A 946 (2016) 104–116

Thin target, proton-induced reactions

Data retrieved from the EXFOR database

Thin target, proton-induced reactions (p,nx)

NUCLEAR SCIENCE AND ENGINEERING: 102, 310-321 (1989)

NUCLEAR SCIENCE AND ENGINEERING: 110, 289-298 (1992)

Thin target, proton-induced reactions (p,nx)

NUCLEAR SCIENCE AND ENGINEERING: 115, 1 - 1 2 (1993)

ALMA MATER STUDIORUM UNIVERSITÀ DI BOLOGNA

Thin target, proton-induced reactions (p,nx)

Fig. 3. Experimental differential cross sections for carbon compared with HETC calculations.

NUCLEAR SCIENCE AND ENGINEERING: 112, 78-86 (1992)

ALMA MATER STUDIORUN UNIVERSITÀ DI BOLOGNA

NUCLEAR SCIENCE AND ENGINEERING: 102, 310-321 (1989)

NUCLEAR SCIENCE AND ENGINEERING: 110, 289-298 (1992)

0

NUCLEAR SCIENCE AND ENGINEERING: 115, 1 - 1 2 (1993)

NUCLEAR SCIENCE AND ENGINEERING: 112, 78-86 (1992)

ALMA MATER STUDIORUN UNIVERSITÀ DI BOLOGNA

TOF Thin target, proton-induced reactions (p,nx) technique Inclusive cross **UNCERTAINTIES** sections Factor/Correction Magnitude Uncertainty Time-Independent Background < 1% 5% Time-Dependent Background < 5% 20% Shadowbar Background < 5% < 3% Air Attenuation < 2.2% < 2.5% Efficiency 3 - 20% 5 - 20% Dead Time < 20% < 5% Charge Normalization 1.0% 5%

> NUCLEAR SCIENCE AND ENGINEERING: 102, 310-321 (1989) NUCLEAR SCIENCE AND ENGINEERING: 110, 289-298 (1992) NUCLEAR SCIENCE AND ENGINEERING: 112, 78-86 (1992) NUCLEAR SCIENCE AND ENGINEERING: 115, 1 - 1 2 (1993)

NUCLEAR SCIENCE AND ENGINEERING: 102, 310-321 (1989) NUCLEAR SCIENCE AND ENGINEERING: 110, 289-298 (1992) NUCLEAR SCIENCE AND ENGINEERING: 112, 78-86 (1992) NUCLEAR SCIENCE AND ENGINEERING: 115, 1 - 1 2 (1993)

ALMA MATER STUDIORUM UNIVERSITÀ DI BOLOGNA

NUCLEAR SCIENCE AND ENGINEERING: 102, 310-321 (1989) NUCLEAR SCIENCE AND ENGINEERING: 110, 289-298 (1992) NUCLEAR SCIENCE AND ENGINEERING: 112, 78-86 (1992) NUCLEAR SCIENCE AND ENGINEERING: 115, 1 - 1 2 (1993)

¹**H+C**₂**H**₄ @200MeV/u (newgeom) statistics: 5x10⁷ primaries

100 MeV

200 MeV

7.8 ns

5.9 ns

¹**H+C**₂**H**₄ @200MeV/u (newgeom) statistics: 5x10⁷ primaries

~ 10000 neutrons
Geometric efficiency ~ 1%
Detection efficiency ~ 10 %
→ 10 events in the detector for 5x10⁷ primaries

¹H+C₂H₄ @200MeV/u (newgeom) statistics: 5x10⁷ primaries

@ 135 MeV/u

Thin target, heavy-lon induced reactions

PHYSICAL REVIEW C 64 (2001) 034607

ALMA MATER STUDIORUM Università di Bologna

@ 135 MeV/u

Thin target, heavy-lon induced reactions

PHYSICAL REVIEW C 64 (2001) 034607

ALMA MATER STUDIORUM UNIVERSITÀ DI BOLOGNA

Thin target, heavy-lon induced reactions

@ 135 MeV/u

FIG. 8. Angular distributions of neutron production cross sections integrated above 20 MeV.

ALMA MATER STUDIORUM UNIVERSITÀ DI BOLOGNA

Thin target, heavy-lon induced reactions

290 MeV/u **(d** 400 MeV/u **(**d 600 MeV/u **(**d

Example: inclusive cross section

TABLE II. Summary of the beams and targets used in the experiment.

Beam	Т	Thickness (g/cm	²)
(MeV)	C target	Cu target	Pb target
C at $E/A = 290$	1.80	4.47	2.27
C at $E/A = 400$	9.00	13.4	9.08
Ne at $E/A = 400$	1.80	4.47	2.27
Ne at $E/A = 600$	3.60	4.47	4.54
Ar at $E/A = 400$	0.720	1.34	1.70
Ar at $E/A = 560$	1.08	1.79	2.27

Differential cross section

NFN

290 MeV/u

(d

Thin target, heavy-lon induced reactions

Fig. 5. Double-differential spectra from 400 MeV/nucleon N interacting in a C target. The spectra at each laboratory angle are offset by the indicated factors of 10. The lines come from a moving-source fit described in the text.

Pb

Istituto Nazionale di Fisica Nuclea

0.57 (0.05 cm)

ALMA MATER STUDIORUM UNIVERSITÀ DI BOLOGNA

Thin target, heavy-lon induced reactions

Handbook on Secondary Particle Production And Transport by High-energy Heavy lons

by Nakamura and Heilbronn

INFN
Istituto Nazionale di Fisica Nucleare

Beam ion and	Targets	Measured	θ	Emin	Facility
energy (MeV/nucleon)		spectra	(deg)	(MeV)	
He (135)	C, Al, Cu, Pb	ddx, n/dΩ	0, 15, 30, 50,	10 (all	RIKEN
		total	80, 110	angles)	
He (230)	Al, Cu	ddx, n/dΩ	5, 10, 20, 30,	5.5, 5, 4, 3.5,	HIMAC
		total	40, 60, 80	3.5, 3	(PH2)
C (135)	C, Al, Cu, Pb	ddx, n/dΩ	0, 15, 30, 50,	10 (all	RIKÉN
		total	80, 110	angles)	
C (200)	IC Co Dh	lddar m/dO	15 10 20 20		
C (290)	C, Cu, PD,	total	10, 10, 20, 50, 10, 60, 80	[10, 5, 5, 7, 4, 2]	(SD2)
<u>C (400)</u>		Idda n/dO	5 10 20 20	3, 3 9 5 5 2 5 2	
C (400)	$L_1, C, C_{12}, L_2, L_1, C_2, D_1$	dax, n/asz	15, 10, 20, 30, 140, 60, 80	[8.5, 5, 5.5, 5]	
	AI, Cu, PD	total	40, 60, 80	3, 3	(PH2 and
NI (400)			5 10 20 20		SB3)
N (400)	C, Cu	$dax, n/d\Omega$	[5, 10, 20, 30, 10, 20, 30]	6, 6, 5, 5.5,	HIMAC
		total	40, 60, 80	5.5, 5	(PH2)
Ne (135)	C, Al, Cu, Pt	$ddx, n/d\Omega$	0, 15, 30, 50,	10 (all	RIKEN
		total	80, 110	angles)	
Ne (337)	C, Al, Cu, U	ddx	30, 45, 60, 90	12 (all	LBL Bevalac
		total		angles)	
Ne (400)	C, Cu, Pb,	$ddx, n/d\Omega$	5, 10, 20, 30,	9,6, 3.5, 3.5,	HIMAC
	ISS wall	total	40, 60, 80	3, 3	(SB3)
Ne (600)	Li, C, CH ₂ ,	ddx , n/d Ω	5, 10, 20, 30,	6, 5.5, 4, 3, 3	HIMAC
	Al, Cu, Pb,	total	40, 60, 80	3	(PH2 and
	marsbar				SB3)
Ar (95)	C, Al, Cu, Pb	$ddx, n/d\Omega$	0, 30, 50, 80,	10 (all	RIKEN
		total	110	angles)	
Ar (400)	C, Cu, Pb	$ddx, n/d\Omega$	5, 10, 20, 30,	10, 7, 3.5,	HIMAC
		total	40, 60, 80	3.5, 3, 3	(PH2 and
					SB3)
Ar (560)	C, Cu, Pb,	$ddx, n/d\Omega$	5, 10, 20, 30,	10, 7, 3.5,	HIMAC
	marsbar	total	40, 60, 80	3.5, 3, 3	(PH2)
Fe (500)	Li, CH ₂ , Al	$ddx, n/d\Omega$	5, 10, 20, 30.	12, 11, 7, 4.	HIMAC
xy	-,,	total	40, 60, 80	3, 3	(PH2)
Kr (400)	Li, C, CH ₂ .	$ddx, n/d\Omega$	5, 10, 20, 30.	20 (all	HIMAC
	Al. Cu. Pb	total	40, 60, 80	angles)	(PH2)

Target:

Thin target, heavy-lon induced reactions

Handbook on Secondary Particle Production And Transport by Highenergy Heavy Ions by Nakamura and Heilbronn NUCLEAR SCIENCE AND ENGINEERING 157 (2007) 142 PHYSICAL REVIEW C 64 (2001) 054609 PHYSICAL REVIEW C 64 (2001) 034607

TOF

technique

Handbook on Secondary Particle Production And Transport by Highenergy Heavy Ions by Nakamura and Heilbronn NUCLEAR SCIENCE AND ENGINEERING **157** (2007) 142 PHYSICAL REVIEW C **64** (2001) 054609 PHYSICAL REVIEW C **64** (2001) 034607

Handbook on Secondary Particle Production And Transport by Highenergy Heavy Ions by Nakamura and Heilbronn NUCLEAR SCIENCE AND ENGINEERING 157 (2007) 142 PHYSICAL REVIEW C 64 (2001) 054609 PHYSICAL REVIEW C 64 (2001) 034607

¹⁶0+C₂H₄ @200MeV/u (newgeom) statistics: 5x10⁷ primaries

ALMA MATER STUDIORUM Università di Bologna

100 MeV

200 MeV

7.8 ns

5.9 ns

¹⁶0+C₂H₄ @200MeV/u (newgeom) statistics: 5x10⁷ primaries

~ 181000 neutrons
Geometric efficiency ~ 1%
Detection efficiency ~ 10 %
→ 181 events in the detector for 5x10⁷ primaries

¹⁶**O**+**C**₂**H**₄ @200MeV/u (newgeom) statistics: 5x10⁷ primaries

Homogeneous THIK target, charged-particle induced reactions

Handbook on Secondary Particle Production And Transport by High-energy Heavy lons

by Nakamura and Heilbronn

Beam ion and energy (MeV/nucleon)	Targets (cm)	Measured spectra	θ (deg)	Emin (MeV)	Facility
He (100)	C (5.0) Al (4.0) Cu (1.5) Pb (1.5)	TTY n/dΩ total	0, 7.5, 15, 30, 60, 90	5.5, 5, 4, 3.5, 3.5, 3	НІМАС
He (155)	Al (8.26)	TTY n/dΩ total	10, 30, 45, 60, 90, 125, 160	10, 3, 3, 7, 4, 3, 3	NSCL
He (160)	Pb (3.937)	TTY Total	0, 45, 90, 120, 150	10, 3, 13, 13, 13	SREL
He (177.5)	C (14.73) H ₂ O (22.86) Steel (4.445) Pb (3.937)	TTY Total	0, 6, 15, 30, 45, 60, 90, 120, 135, 150	3, 10, 11, 11, 3, 10, 3, 13, 3, 13	SREL

Beam ion and energy	Targets (cm)	Measured	θ	Emin	Facility
(MeV/nucleon)		spectra	(deg)	(MeV)	
He (180)	C (16.0)	TTY	0, 7.5, 15, 30,	17, 11, 5.5,	HIMAC
	Al (12.0)	n/dΩ	60, 90	6.5, 3.5, 3.5	
	Cu (4.5)	total			
	РЬ (5.0)				
C (100)	C (2.0)	TTY	0, 7.5, 15, 30,	4, 4, 3.5, 3.5,	HIMAC
	Al (1.0)	n/dΩ	60, 90	3, 3	
	Cu (0.5)	total			
	Pb (0.5)				
C (155)	Al (8.26)	TTY	10, 30, 45, 60,	10, 3, 3, 7, 4,	NSCL
		n/dΩ	90, 125, 160	3, 3	
		total			
C (180)	C (6.0)	TTY	0, 7.5, 15, 30,	5.5, 5.5, 3.5,	HIMAC
	Al (4.0)	n/dΩ	60, 90	2.5, 3, 2.5	
	Cu (1.5)	total			
	Pb (1.5)				
C (400)	C (20.0)	TTY	0, 7.5, 15, 30,	8.5, 5, 3.5, 3,	HIMAC
	Al (15.0)	n/dΩ	60, 90	3, 3	
	Cu (5.0)	total			
	Pb (5.0)				
Ne (100)	C (1.0)	TTY	0, 7.5, 15, 30,	6, 6, 5, 5.5,	HIMAC
	Al (1.0)	n/d Ω	60, 90	5.5, 5	
	Cu (0.5)	total			
	Pb (0.5)				
Ne (180)	C (4.0)	TTY	0, 7.5, 15, 30,	9,6, 3.5, 3.5,	HIMAC
	Al (3.0)	n/dΩ	60, 90	3,3	
	Cu (1.0)	total			
	Pb (1.0)				
Ne (400)	C (11.0)	TTY	0, 7.5, 15, 30,	6, 5.5, 4, 3, 3,	HIMAC
	Al (9.0)	n/dΩ	60, 90	3	
	Cu (3.0)	total			
	Pb (3.0)				
Si (800)	C (23.0)	TTY	0, 7.5, 15, 30,	11, 8, 8, 4,	HIMAC
	Cu (6.5)	$n/d\Omega$	60, 90	3.5, 3.5	
		total			
Ar (400)	C (7.0)	TTY	0, 7.5, 15, 30,	10, 7, 3.5,	HIMAC
	Al (5.5)	n/dΩ	60, 90	3.5, 3, 3	
	Cu (2.0)	total			
	Pb (2.0)				

Homogeneous THIK target, charged-particle induced reactions

IAEA Benchmark of Spallation Models available online: https://www-

nds.iaea.org/spallations/

Double differential cross section (neutron)

Proj.	Targ.	E (MeV)	Reference	Lab.	EXFOR	Figure
n	^{nat} Fe	65	E.L.Hjort et al., Phys.Rev.C.53(1996)237	UC Davis, USA	13522	[fig]
р	^{nat} Fe	800	W.B.Amian et al., Nucl.Sci.Eng.112(1992)78	LANL, USA	C0170	[fig]
р	^{nat} Fe	800	S.Leray et al., Phys.Rev.C65(2002)044621	Saturn, France	00977	[fig]
р	^{nat} Fe	1200	S.Leray et al., Phys.Rev.C65(2002)044621	Saturn, France	00977	[fig]
р	^{nat} Fe	1600	S.Leray et al., Phys.Rev.C65(2002)044621	Saturn, France	00977	[fig]
р	^{nat} Fe	3000	K.Ishibashi et al., J.Nucl.Sci.Tech.34(1997)529	KEK, Japan	E1762	[fig]
р	^{nat} Pb	256	M.M.Meier et al., Nucl.Sci.Eng.110(1992)289	LANL, USA	C0168	[fig]
р	^{nat} Pb	800	W.B.Amian et al., Nucl.Sci.Eng.112(1992)78	LANL, USA	C0170	[fig]
р	^{nat} Pb	800	S.Leray et al., Phys.Rev.C65(2002)044621	Saturn, France	00977	[fig]
р	^{nat} Pb	1200	S.Leray et al., Phys.Rev.C65(2002)044621	Saturn, France	00977	[fig]
р	^{nat} Pb	1600	S.Leray et al., Phys.Rev.C65(2002)044621	Saturn, France	00977	[fig]
р	^{nat} Pb	3000	K.Ishibashi et al., J.Nucl.Sci.Tech.34(1997)529	KEK, Japan	E1762	[fig]
р	²⁰⁸ Pb	63	A.Guertin et al., Eur.Phys.J.A23(2005)49	Louvain, Belgium	01146	[fig]

THICK target: non homogenous target (clinical phantom)

	FWHM x (mm)	FWHM y (mm)		
Protons, 155 MeV u ⁻¹	9.46	9.69		
Protons, 200.28 MeV u^{-1}	7.66	7.80		
Carbon ions, 292.96 MeV u^{-1}	5.51	4.41		
Carbon ions, 387.78 MeV u^{-1}	4.23	3.72		

beam axis 5 cm a) stilbene 1.2 m 30 cm EJ-309 90° 45° phantom 30 cm 15° Phys. Med. Biol. 65 (2020) 155002 NFN

BW3 phantom: 30 cm x 30 cm x 15 cm (thick enough to stop the proton and carbon-ion beams)

@ CNAO

Istituto Nazionale di Fisica Nucle

THICK target: non homogenous target (clinical phantom)

@ CNAO

THICK target: non homogenous target (clinical phantom)

@ CNAO

Figure 9. Comparison between simulated and measured EJ-309 pulse height distributions, for 387.78 MeV u^{-1} carbon-ion irradiation, at measurement locations of 15°, 45° and 90° (left to right) with respect to the beam axis.

Phys. Med. Biol. 65 (2020) 155002

ALMA MATER STUDIORUM Università di Bologna

Conclusions

- Large number of experimental data sets but often not made available on nuclear reaction databases.
- A few exclusive cross section measurements on p + ¹²C and + ¹⁶O, respectively. Very challenging experiments and most valuable data(?)
- Inclusive differential cross sections on thin targets for p + ¹²C and ¹⁶O available at several angles and energies.
- No neutron data for the ¹²C + ¹⁶O reaction. Few neutron data for ¹²C + ¹²C.
- Experiments on thick targets, show the **need for more accurate neutron data**.

Worth investigating feasibility @ FOOT ?

> $d^2\sigma/dEd\Omega$ could be improved and perhaps crosschecked?

Similar experiments could be performed @ FOOT?

ALMA MATER STUDIORUM Università di Bologna

Conclusions

During the next test beam at CNAO It could be possible to **repeat** some **measurements** present **in the literature** about neutron production in $p+^{12}C$ and $^{12}C+^{12}C$ reactions:

- p + ¹²C @ 30 and 60 (150?) deg. with energy of 113 and 256 MeV
- ¹²C + ¹²C @ 30 and 80 deg. with **energy** of **135** and **290 MeV/u**

These tests will provide the information about the feasibility of detecting neutrons with the present setup and with other detectors.

Dedicated simulations are required to be able to better prepare the test and estimate the required beam time.

Dedicated beam time (approximately ... h) is neessary to perform the test. Count rate might be an issue!

ALMA MATER STUDIORUM Università di Bologna

Cristian Massimi

Department of Physics and Astronomy

cristian.massimi@unibo.it

www.unibo.it

backup

- Handbook on Secondary Particle Production And Transport by Highenergy Heavy Ions, by Nakamura and Heilbronn
- **IAEA Benchmark of Spallation Models** available online: https://wwwnds.iaea.org/spallations/

