



## IX FOOT Collaboration Meeting 9-11 December 2020





Ministero dell'Università e della Ricerca

## PRIN & FOOT

### Vincenzo Patera











- Time span: 3 years program. Application deadline: 26 Jan 2021. Actual starting (money arrives to Dept/section): early 2022-> end early 2025.
- Max budget: 1.2 Meuro. Number of units up to 5. Both contracts and material funding allowed.
- INFN personnel must go in ONE unit. Also associate personnel from university can join INFN unit, but can not coordinate INFN unit
- The FOOT community already presented in 2018 a proposal focused on the neutron detection in a FOOT-like. The evaluation was 92/100. The funded proposals had 94/100 minimum.







| CRITERI DI VALUTAZIONE                                                                                                                                          | PUNTEGGIO  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
| 1. <b>Qualità del progetto di ricerca</b> – merito scientifico e natura innovativa del progetto dal punto di vista internazionale – con particolare riguardo a: | Totale: 40 |
| a) Chiarezza e pertinenza degli obiettivi del progetto;                                                                                                         | a) 10      |
| <li>b) Rilevanza ed originalità del progetto proposto nella specifica area<br/>scientifica;</li>                                                                | b) 10      |
| <li>c) Metodologia adottata, organicità del progetto, anche rispetto allo<br/>specifico contributo delle unità locali (se previste);</li>                       | c) 10      |
| <ul> <li>d) Posizionamento del progetto rispetto allo stato dell'arte nella<br/>specifica area scientifica;</li> </ul>                                          | d) 10      |

### TOTAL POINTS: 100







| 2. Co<br>proget<br>piano<br>partico | <b>mposizione del gruppo di ricerca, fattibilità e congruità del</b><br>tto – merito scientifico della compagine di ricerca, fattibilità del<br>di lavoro e ragionevolezza della richiesta di finanziamento – con<br>olare riguardo a: | Totale: 40 |
|-------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
| a)                                  | Eccellenza del Principal Investigator, dei responsabili delle unità locali (se previste) e dell'intera compagine di ricerca;                                                                                                           | a) 10      |
| b)                                  | Capacità di realizzare il progetto proposto (qualificazione, composizione e complementarietà dell'intera compagine proposta);                                                                                                          | b) 10      |
| c)                                  | Organizzazione del progetto riguardo agli obiettivi proposti, ai tempi<br>ritenuti necessari per il completamento del progetto e alle risorse<br>richieste (strumentazione, dimensioni della compagine di ricerca,<br>management);     | c) 10      |
| d)                                  | Coerenza degli impegni temporali dei componenti della compagine<br>di ricerca, congruenza e pertinenza del piano di spesa con gli<br>obiettivi e l'articolazione delle attività;                                                       | d) 10      |







| 3. Impatto sociale del progetto, con particolare riferimento a:                                                                                                                                                                                                                                                                       | Totale: 20 |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
| <ul> <li>a) Sfide che la ricerca affronta sotto il profilo dell'incidenza<br/>sull'innovazione tecnologica, sulle applicazioni industriali, sulla<br/>crescita economica ovvero sulla soluzione di problemi sociali, sulla<br/>protezione dell'eredità culturale o dell'ambiente anche con approcci<br/>interdisciplinari;</li> </ul> | a) 10      |
| <ul> <li>b) Efficacia delle azioni di divulgazione del progetto di ricerca e dei<br/>relativi risultati; impatto del progetto sulla comunità scientifica e<br/>sulla società alla luce degli obiettivi definiti dal programma quadro<br/>di ricerca ed innovazione dell'UE;</li> </ul>                                                | b) 10      |
| TOTALE PUNTEGGIO                                                                                                                                                                                                                                                                                                                      | 0-100      |

??

TOTAL POINTS: 100





Distaza da

determinare/variare cercando l'ottimizzazione in risoluzione di TOF, dimensioni trasversali del calorimentro/copertura angolare,....

CALORIMETRO CON ALTA RISOLUZIONE TEMPORALE ALTA EFFCICIENZA

VERTEX TRACKER/MSD (PIU' ESTESO RISPETTO A QUELLO DI FOOT?)





## In ELUKA ..









The detector would be a sector of one barrel module pf KLOE calorimeter Namely a 60 cm long part: Dimension: 52x60x23 cm<sup>3</sup> Weight : 250 kg

### The KLOE calorimeter



#### **Calorimeter module**





24 barrel modules Trapezoidal section (52 – 59)x23 cm<sup>2</sup> length: 430 cm

**Pb/Sci fibres structure** 200 layers, lead foils + glue + fibres





### **Working principle**





- (1) Scintillating fiber (1mm diameter)
   [emitting in the blue-green region
   (λ<sub>peak</sub>~460 nm)]
   (2) Lead: 0.5mm grooved layers
   36° (95% Pb and 5% Bi)
  - (3) Glue: Bicron BC-600ML (72% Epoxy resin, 28% Hardener)

n(core=**polystyrene**) = **1.6** n(cladding=**PMMA**) = **1.49** Only ~3% of photons produced are trapped in the fiber But :

- (a) ~ uni-modal propagation at 21° → small transit time spread
- (b) Small attenuation ( $\lambda \sim 4-5 \text{ m}$ )
- (c) Cladding light removed by optical contact with glue n(glue) ~ n(core)
- Fibers used:Kuraray SCSF-81Pol.Hi.Tech 00046**15.000 km** of fibers

(fully tested: A.Antonelli et al., NIM A370 (1996) 367)



DAT –MC (FLUKA) PHOTON RESPONSE comparison



#### Excellent time resolution on e.m. particles: 50 ps/sqrt(E[gev]) Similar on cosmic

#### **Energy response**

The curve is the known detector resolution, dots FLUKA simulation



**CLUSTER POSITION – longitudinal resolution** 



The curve is the known detector response, dots FLUKA simulation





- Position along the fiber obtained via left right time difference
- ✓ 90+90 electronic channels
- Coupling to photodetector via light guides
- 2 possible readout solution : pmt / sipm
- $\checkmark$  Neutron energy obtained via TOF
- ✓ First plane act as charged veto



# Possible performances: eff

The enhancement of the efficiency appears to be due to the large inelastic production of neutrons in Pb. These secondary neutrons:

- are produced isotropically;
- are associated with a non negligible fraction of e.m. energy and of protons, which can be detected in the nearby fibers;
- have low energy and then have a large probability to do new interactions in the calorimeter with neutron/proton/γ production.



Eff ~ factor 4 higher wrt plastic scintillators





## Possible performance: TOF

- \*Critical issue  $\sigma_E/E = 2 \sigma_t/t$ . Only small fraction of the neutron energy release in calo is visible
- \*Trade off: long lever arm-> good energy res, little acceptance
- \*High efficiency allows to have moving setup with multiple data taking
- \*Es: 3 different positions with overlap region in different data taking for intercalibration. Out of beam position allow for high beam rate



Calo





The TOF resolution is driven by the release energy: some hint form a KLONE test beam at Uppsala neutron beam:





With 20 MeV energy release ~300 ps resolution can be obtained. For 10 MeV energy release 400 ps would give->  $\sigma_{Tof}/Tof ~5-10\%$  $\sigma_E/E ~10-20\%$  improving with E neutron





## Read out choices...

Using SiPM:

\*Light guides, Sipm matrixes (8x8 mm<sup>2</sup>?), WaveDream electronics

Using PMT:

```
Light guides, pmt (2 cm diameter, PADME like), VME
CAEN 32 ch WFD x 7 boards
```

"Mixed" read-out

```
*Light guides, PMT, WaveDreams electronics
*
```



# Una possibile divisione compiti

\*Roma La Sapienza: \* KLONE, FEE calo (?), start counter \*INFN (LNF, PG, To): \* Tracciatore carichi \* Beam monitor \* Simulazioni \*Univ. Bologna: \* DAQ \* FEE Calo? \* Univ Napoli: \*Arm ad emulsioni \*Univ. Trento: \*Beam monitor \*Meccanica, guide di luce

NB, in case of different read-out approach different sharing can be envisaged





## Verso la costruzione del Budget

- \*Envelope: ≤1.2 Meuro
- \*Overhead: Warning: INFN nel 2018 tratteneva il 30% della quota non rendicontabile assegnata alla su unita'.

### \*Costi per Apparato:

- \* fotomoltiplicatori:
- \*vertex tracker:
- \*Elettronica di lettura:
- \*Emulsioni:
- \*Costi di operazione e run:
- \*Personale: max 100 kEuro/unita' operativa (max 600 kEuro totali)



### Proposta per il Nome



## Il contest nel 2018 aveva dato FOOTnote come vincitore... vogliamo cambiare?





## Slowly moving... a bit like lethargy



- Neutrons are just beyond the horizon: our time landscape can go well beyond the 2022 if neutron data taking can be undertaken (educated guess: INFN would like to exploit the FOOT detector as much as possible)
- PRIN : is an opportunity to explore a possible continuation (see neutron item)
- Congrats to Luca Galli (new Trigger coordinator) and Alessio Sarti (already software coordinator) that substitute A. Sciubba for Roma 1 in the Institution Board
- "Congrats" also to Maria Cristina Montesi, Graziano Bruni, and Francesco Tommasino to be appointed in the Magnet Bid (thanks!)
- Last comment: the meeting has very busy schedule !!!







## **Clock is counting**

- The Team should be frozen asap. We should use january to refine the physics proposal and budget request.
- A team has been set up (Chiara La Tessa, Silvia Muraro and Sara Valentinetti) to review the proposal, but others should join them
- The neutron activity will be accepted very well by CSN3, also because is a natural prosecution of the FOOT program

### Let's discuss....

## **PRIN 2020**







## Neutron Yield @ 800 MeV/u

#### $dN/d\Theta$







## Neutron Yield @ 800 MeV/u

 $dN/d\Theta$ 

