
CI and CD on K8S @ CNAF

Andrea Ceccanti
andrea.ceccanti@cnaf.infn.it

Corso OLSS 2021

mailto:andrea.ceccanti@cnaf.infn.it?subject=
mailto:andrea.ceccanti@cnaf.infn.it?subject=

What I will talk about?
Our experience in developing a CI and (almost) CD pipeline for the
middleware development team @ CNAF

2

>_

Commit Trigger Continuous
Integration

Build & TestsReport

Why CI and testing?

CI/CD = Process + Tools (+ Perseverance)

6

Process is harder to get right than a working CI/CD pipeline

• overkill process kills productivity, bores everyone to death and does not
improve the quality of delivered code

• sloppy process only introduces overhead without quality improvements

The hardest thing to change is the developer attitude

• testing is more important than coding

Processes are improved incrementally, in small steps

• especially for legacy codebases that mostly work fine in production

Tools are learned incrementally, in small steps

• it can take years to learn how develop and maintain an effective CI/CD pipeline

CI/CD infrastructure

Our CI/CD infrastructure

8

The K8S infrastructure

9

The K8S ingress controller

Allows access to K8S services from the external network

Deployed as a service inside the K8S cluster itself

10

Example ingress controller config

11

Jenkins

LTS release branch running as a K8S application

Slaves provisioned via the Kubernetes plugin

Jenkins Home provisioned as a persistent volume on NFS

• nightly backup

12

Nexus repository

Nexus is our CI repository

• Maven repo (local artifacts + Maven central mirror)

• Packages repository

Storage provided as a K8S persistent volume

13

Monitoring infrastructure & services

All infrastructure nodes (VMs on Cloud@CNAF) monitored via Sensu

K8S monitored via Prometheus

Grafana/Kibana/Uchiwa dashboards

14

Process

SCRUM-ish development process

16

Git-flowish branching model

17

Git-flowish branching model

18

Consistent development environment

For every service, we have a docker-compose to bootstrap a self-
contained, embedded development environment

The main objective is avoiding the “builds/works on my machine”
mantra

• just to replace it with “builds/works on my docker installation” mantra

19

VSCode and devcontainers

https://code.visualstudio.com/docs/remote/containers

Makes it very easy to develop inside a container

20

https://code.visualstudio.com/docs/remote/containers
https://code.visualstudio.com/docs/remote/containers

VSCode and devcontainers

21

VSCode and devcontainers

22

VSCode and devcontainers

22

VSCode running
in the container

VSCode and devcontainers

23

VSCode and devcontainers

23

Devcontainer
configuration

VSCode and devcontainers

24

The dev environment
is defined with a

compose file

VSCode and devcontainers

25

Volumes useful to persist
extensions installed by VSCode

VSCode and devcontainers

26

Volumes setup needed since
our image runs as user build

Testing

Unit tests

• JUnit + Mockito in Java, GTest + GMock in C++, unittest in python

Integration tests

• Spring MockMVC tests

Functionality acceptance tests

• Robot framework-based

Deployment tests

• Installation from packages/docker image + run functionality/acceptance
testsuite

Load tests

• Mainly based on the Grinder framework, to perform stress testing before and
across releases

27

CI pipeline example: IAM

Conventional build & test process for maven-based Spring application

• with additional SonarQube static analysis in the middle

The main artifacts of the build are docker images

• pushed to Dockerhub (for some branches)

28

CI pipeline definitions live with the code

29

Slack integration

All interesting events trigger a slack notification

30

Code reviews

31

Git(hub/lab) projects to track sprint progress

32

Git(hub/lab) projects to track sprint progress

32

Release preparation

33

