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What I will talk about?
Our experience in developing a CI and (almost) CD pipeline for the 
middleware development team @ CNAF
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Why CI and testing?







CI/CD = Process + Tools (+ Perseverance)
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Process is harder to get right than a working CI/CD pipeline 

• overkill process kills productivity, bores everyone to death and does not 
improve the quality of delivered code 

• sloppy process only introduces overhead without quality improvements 

The hardest thing to change is the developer attitude 

• testing is more important than coding 

Processes are improved incrementally, in small steps 

• especially for legacy codebases that mostly work fine in production 

Tools are learned incrementally, in small steps 

• it can take years to learn how develop and maintain an effective CI/CD pipeline



CI/CD infrastructure



Our CI/CD infrastructure

8



The K8S infrastructure
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The K8S ingress controller

Allows access to K8S services from the external network 

Deployed as a service inside the K8S cluster itself
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Example ingress controller config
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Jenkins

LTS release branch running as a K8S application 

Slaves provisioned via the Kubernetes plugin 

Jenkins Home provisioned as a persistent volume on NFS 

• nightly backup 
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Nexus repository

Nexus is our CI repository 

• Maven repo (local artifacts + Maven central mirror) 

• Packages repository 

Storage provided as a K8S persistent volume
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Monitoring infrastructure & services

All infrastructure nodes (VMs on Cloud@CNAF) monitored via Sensu  

K8S monitored via Prometheus 

Grafana/Kibana/Uchiwa dashboards
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Process



SCRUM-ish development process
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Git-flowish branching model
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Git-flowish branching model
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Consistent development environment

For every service, we have a docker-compose to bootstrap a self-
contained, embedded development environment 

The main objective is avoiding the “builds/works on my machine” 
mantra 

• just to replace it with “builds/works on my docker installation” mantra 
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VSCode and devcontainers

https://code.visualstudio.com/docs/remote/containers  

Makes it very easy to develop inside a container 
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VSCode and devcontainers
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VSCode and devcontainers
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VSCode and devcontainers
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VSCode running  
in the container



VSCode and devcontainers
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VSCode and devcontainers
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Devcontainer 
configuration



VSCode and devcontainers
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The dev environment  
is defined with a  

compose file



VSCode and devcontainers
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Volumes useful to persist 
extensions installed by VSCode



VSCode and devcontainers
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Volumes setup needed since  
our image runs as user build



Testing

Unit tests 

• JUnit + Mockito in Java, GTest + GMock in C++, unittest in python 

Integration tests 

• Spring MockMVC tests 

Functionality acceptance tests 

• Robot framework-based 

Deployment tests 

• Installation from packages/docker image + run functionality/acceptance 
testsuite 

Load tests 

• Mainly based on the Grinder framework, to perform stress testing before and 
across releases
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CI pipeline example: IAM

Conventional build & test process for maven-based Spring application 

• with additional SonarQube static analysis in the middle 

The main artifacts of the build are docker images 

• pushed to Dockerhub (for some branches)
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CI pipeline definitions live with the code
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Slack integration

All interesting events trigger a slack notification

30



Code reviews
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Git(hub/lab) projects to track sprint progress
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Git(hub/lab) projects to track sprint progress
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Release preparation
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