
Corso OLSS - 2021

Introduction to Containers
(Oltre Lo) Sviluppo Software

Alessandro Costantini, Doina Cristina Duma

INFN – CNAF

April 27th 2021, Bologna

This work is licensed under a Creative Commons Attribution-
NonCommercial-ShareAlike 4.0 International license

Corso OLSS - 2021

Overview

2

➢ Containers
➢ Containers vs VMs

➢ Working with containers

➢ Networking

➢ Management

➢ And…. Hands-on/demos, while we go …
➢ https://baltig.infn.it/corso-olss-2020/corso_olss_2020

Corso OLSS - 2021

Containers

Corso OLSS - 2021

• Building a web service on a Ubuntu machine

• Code works fine on local machine

• Moved to a remote server …. does not work

Background

Corso OLSS - 2021 4

• Reasons:
• Different OS => missing libraries or files for the

runtime

• Incompatible version of software (python, java)

It is essential to find a solution to these problems

Corso OLSS - 2021 5

Corso OLSS - 2021 6

Corso OLSS - 2021 7

Corso OLSS - 2021

Intermodal Shipping Container Ecosystem

8

Corso OLSS - 2021

Intermodal Shipping Container Ecosystem

9

Corso OLSS - 2021

OK, not everything always goes as planned…

10

Corso OLSS - 2021

Analogue solution: virtual containers

11

Corso OLSS - 2021

Virtualization

12

• What is “Virtualization” in general?

• It is the creation of a virtual version
of something: an Operating System,

a storage device, a network resource:
pretty much almost anything can be
made virtual.

• This is done through an abstraction,
that hides and simplifies the details
underneath.

Corso OLSS - 2021

• Containers are an operating system virtualization technology used to package applications
and their dependencies and run them in isolated environments.

• They provide a lightweight method of packaging and deploying applications in a standardized way
across many different types of infrastructure.

• Based on 2 main features of Linux kernel

• “control groups” or “cgroups”:

• a kernel feature that allow processes and their resources to be grouped, isolated, and managed as a unit

• cgroups provide the functionality needed to bundle processes together as a group and limit the resources they
can access

• Namespaces limit what processes can see of the rest of the system.

• Processes running inside namespaces are not aware of anything running outside of their namespace.

• How Do Containers Work?

• To understand how containers work, it is sometimes helpful to discuss how they differ from virtual
machines.

Containers

Corso OLSS - 2021 13

Corso OLSS - 2021

• As server processing power and capacity increased,
bare metal applications weren’t able to exploit the
new abundance in resources.
➢Thus, VMs were born, designed by running software on

top of physical servers to emulate a particular hardware
system.

➢A hypervisor (VMM) - > is software, firmware, or
hardware that creates and runs VMs.
➢ sits between the hardware and the virtual machine and is

necessary to virtualize the server.

• Within each VM runs a unique guest OS.
• VMs with different operating systems can run on the

same physical server

What are VMs?

Corso OLSS - 2021 14

Corso OLSS - 2021

• Operating system (OS) virtualization has grown in popularity
over the last decade to enable software to run predictably and
well when moved from one server environment to another.
• containers provide a way to run these isolated systems on a single

server or host OS.
• containers sit on top of a physical server and its host OS

• shares the host OS kernel, the binaries and libraries
• Shared components are read-only =>”light”
• reduce management overhead as they share a common OS
operating system

• Differences
• Containers provide a way to virtualize an OS so that multiple

workloads can run on a single OS instance
• VMs, the hardware is being virtualized to run multiple OS instances

What are containers?

Corso OLSS - 2021 15

Corso OLSS - 2021

Going beyond …. Virtual Machines

D.C. Duma / A. Costantini 16

Virtual Machines (VMs) carry quite some overhead with them
-> introducing Containers

Virtual Machine
➢ Each virtualized application includes not only the

application — which may be only 10s of MB — and the
necessary binaries and libraries, but also an entire
guest operating system — which may weigh 10s of GB.

Container
➢ comprises just the application and

its dependencies. It runs as an
isolated process in userspace on
the host operating system, sharing
the kernel with other containers.
Thus, it enjoys the resource
isolation and allocation benefits of
VMs but is much more portable
and efficient.

Corso OLSS - 2021

Containers are «lightweight VMs»

17

A container is a standard unit of software that packages up code and all
its dependencies, so the application runs quickly and reliably from one
computing environment to another

Source: http://goo.gl/4jh8cX

http://goo.gl/4jh8cX

Corso OLSS - 2021

“Lightweight”, in practice

18

• Containers require less resources: they start faster and run faster than VMs, and you can fit many
more containers in a given hardware than VMs.

• Very important: they provide enormous simplifications to software development and deployment
processes, because they allow to simply encapsulate applications in a controlled and extensible
way.

• Provide a uniformed wrapper around a software package:

➢ «Build, Ship and Run Any App, Anywhere»

“Similar to shipping containers: The container is always the same, regardless of the contents and thus
fits on all trucks, cranes, ships, …”

Corso OLSS - 2021

• Docker is an open-source platform that automates the development and
deployment of applications inside portable and self-sufficient software
“containers”.
• Like virtualenv for Python

Docker (1)

Corso OLSS - 2021 19

• Main components:
• Docker Engine

• portable runtime and packaging system
that gives standardized environments
for the development and flexibility for
workload deployment so that it is not
restricted by infrastructure technology.

• Docker Hub
• Docker Hub is a cloud solution for

sharing apps and automating
workflows.

Corso OLSS - 2021

• Enhanced to orchestrate multi-container distributed application:
• Docker Compose - a tool for defining and running multi-container Docker

applications.
• transforms complex and time-consuming procedure of deployment into a simple one.
• A small YAML configuration file allows assembling apps from discrete Docker containers

and deploy them very quickly, independently of any underlying infrastructure.

• Docker Machine a tool for provisioning and managing your Dockerized hosts
(hosts with Docker Engine on them)
• Flexibility in host provision provides quicker iterations and compressing the development-

to-deployment cycle.

• Docker Swarm - is a group of either physical or virtual machines that are
running the Docker application and that have been configured to join together
in a cluster
• activities of the cluster are controlled by a swarm manager, and machines that have joined

the cluster are referred to as nodes
• It is an orchestration management tool that runs on Docker application

Docker (2)

Corso OLSS - 2021 20

Corso OLSS - 2021

• “A container image is a lightweight, standalone,
executable package of software that includes
everything needed to run an application: code,
runtime, system tools, system libraries, and
settings.”
➢A Docker image is an immutable (unchangeable) file

that contains the source code, libraries,
dependencies, tools, and other files needed for an
application to run.
➢They are templates, read-only, cannot run

➢Container is a running image

Images can exist without containers, whereas a
container needs to run an image to exist

Containers vs. Images

Corso OLSS - 2021 21

Corso OLSS - 2021

• From a container image, you can start a container based on it. Docker
containers are the way to execute that package of instructions in a
runtime environment

• Containers run until they fail and crash, stopped.
• does not change the image on which it is based

• Docker image = recipe for a cake

• and a container = cake you baked from it.

Docker container

Corso OLSS - 2021 22

Corso OLSS - 2021

• A Docker image typically specifies:
• Which external image to use as the basis for

the container, unless the container image is
written from scratch;

• Commands to run when the container starts;

• How to set up the file system within the
container; and

• Additional instructions, such as which ports
to open on the container, and how to import
data from the host system.

Docker Image

Corso OLSS - 2021 23

• It is a set of instructions that defines what should run inside a container.

Corso OLSS - 2021

• Container:
• In Linux, containers are an operating system virtualization technology used to package applications and their dependencies and run them in

isolated environments.

• Container Image:
• Container images are static files that define the filesystem and behavior of specific container configurations. Container images are used as a

template to create containers.

• Docker:
• Docker was the first technology to successfully popularize the idea Linux containers.
• Among others, Docker’s ecosystem of tools includes docker, a container runtime with extensive container and image management features,

docker-compose, a system for defining and running multi-container applications, and Docker Hub, a container image registry.

• Linux cgroups:
• or control groups, are a kernel feature that bundles processes together and determines their access to resources. Containers in Linux are

implemented using cgroups in order to manage resources and separate processes.

• Linux namespaces:
• a kernel feature designed to limit the visibility for a process or cgroup to the rest of the system. Containers in Linux use namespaces to help

isolate the workloads and their resources from other processes running on the system.

• LXC:
• LXC is a form of Linux containerization that predates Docker and many other technologies while relying on many of the same kernel technologies.

Compared to Docker, LXC usually virtualizes an entire operating system rather than just the processes required to run an appl ication, which can
seem more similar to a virtual machine.

• Virtual Machines:
• Virtual machines, or VMs, are a hardware virtualization technology that emulates a full computer. A full operating system is installed within the

virtual machine to manage the internal components and access the computing resources of the virtual machine.

Container terminology

Corso OLSS - 2021 24

https://hub.docker.com/

Corso OLSS - 2021

Docker for different OS

25

Supported OS:

• https://docs.docker.com/engine/install/
• Windows: https://docs.docker.com/docker-for-windows/install/

• Linux:
• for RedHat see https://docs.docker.com/install/linux/docker-ce/centos/

• MacOS: https://docs.docker.com/docker-for-mac/

https://docs.docker.com/engine/install/
https://docs.docker.com/docker-for-windows/install/
https://docs.docker.com/install/linux/docker-ce/centos/
https://docs.docker.com/docker-for-mac/

Corso OLSS - 2021

Some… hands-on

Corso OLSS - 2021

• Each of you has access to a VM with CentOS 7, a public IP address, 4GB
RAM, a 20GB disk and 2 Virtual CPU.
• You have root permission on that machine

• Link to the material in Baltig related to the hands-on
• https://baltig.infn.it/corso-olss-2020/corso_olss_2020/-

/tree/master/containers

• You should now log on to your VM.
• We will use it for the hands-on on containers and in other lectures during this

course.
➢ Linux/Mac OS:

➢ ssh –i <private_key> -l centos devopsX.cloud.cnaf.infn.it

➢ Windows:
➢ https://devops.ionos.com/tutorials/use-ssh-keys-with-putty-on-windows/

The test infrastructure for this course

Corso OLSS - 2020 27

https://baltig.infn.it/corso-olss-2020/corso_olss_2020/-/tree/master/containers
https://devops.ionos.com/tutorials/use-ssh-keys-with-putty-on-windows/

Corso OLSS - 2021 28

• To avoid specifying sudo before each docker command, the user
"centos" was added to the docker Unix group. Check it:

centos@VM1:~$ id

(where do you see it?)

centos@VM1:~$ docker info

[…]

Containers: 0

Running: 0

Paused: 0

Stopped: 0

[…]

Check hands-on environment

Corso OLSS - 2021

The first docker commands

29

• To download a container
image from Docker Hub, use
the command “docker pull”.

• To run a container, use the
command “docker run”.

Containers

• By default, the “container image registry” on the left is the service
running at https://hub.docker.com (called “Docker Hub”). It stores
more than 100,000 container images.

https://hub.docker.com/

Corso OLSS - 2021

Search, pull, run

30

• Try these commands on your VM:
• Search for a container image at Docker Hub:

• $ docker search ubuntu (or e.g. docker search rhel – what would this
do?)

• Fetch (pull) a Docker image (in this case, an Ubuntu container image):
• $ docker pull ubuntu

• List images
• $ docker images

• Execute (run) a docker container:
• Run the “echo” command inside a container and then exit:

• $ docker run ubuntu echo "hello from the container”
hello from the container

• Run a container in interactive mode:
• $ docker run –it ubuntu /bin/bash

Corso OLSS - 2021

How efficient is docker?

31

$ docker images

REPOSITORY TAG IMAGE ID CREATED SIZE

ubuntu latest 7698f282e524 2 weeks ago 72.9MB

=> the latest Ubuntu image takes about 70MB of disk space as a container. If
you had just to download a full Ubuntu (server) distribution, it would be more
in the range of 900MB.

$ time docker run ubuntu echo “hello from the container”
hello from the container

real 0m1.384s
user 0m0.069s
sys 0m0.106s

=> The total time it takes on this system (not a really powerful one) to start a
container, execute a command inside it and exit from the container is about
half a second. How long would it take if we used a full VM?

Corso OLSS - 2021

How to extend a docker container (1)

32

• Suppose you need a command inside a container, but it is not installed in the
image you pulled from Docker Hub. For example, you would like to use the
ping command but by default it’s not available:

• $ docker run ubuntu ping www.google.com
docker: Error response from daemon: OCI runtime create failed:
container_linux.go:345: starting container process caused "exec: \"ping\":
executable file not found in $PATH": unknown.

• We can install it ourselves; it is in the package iputils-ping:
• $ docker run ubuntu /bin/bash -c "apt update; apt -y install iputils-ping"

• But it still doesn’t work!?
• $ docker run ubuntu ping www.google.com
docker: Error response from daemon: OCI runtime create failed:
container_linux.go:345: starting container process caused "exec: \"ping\":
executable file not found in $PATH": unknown.

• Why? The ping command was successfully installed!

http://www.google.com/
http://www.google.com/

Corso OLSS - 2021

How to extend a docker container (2)

33

• Whenever you issue a docker run <container> command, a new container is
started, based on the original container image.
• Check it yourself with $ docker ps -a command.

• If you modify a container and then want to reuse it (which is often the case!),
you need to save the container, creating a new image.

• So, install what you need to install (e.g. the iputils-ping package, using the
same command as before) , and then issue a commit command like
$ docker commit xxxx ubuntu_with_ping

• This locally commits a container, creating an image with the name
ubuntu_with_ping (or any other name you like). Take xxxx from the
container ID shown by the docker ps –a output.

• Do it now.

Corso OLSS - 2021

How to extend a docker container (3)

34

• Verify that the ping command inside our new image now works:
• $ docker run ubuntu_with_ping ping -c 3 www.google.com

PING www.google.com (216.58.216.100) 56(84) bytes of data.

64 bytes from ord30s22-in-f100.1e100.net (216.58.216.100): icmp_seq=1 ttl=43 time=18.5 ms

64 bytes from ord30s22-in-f100.1e100.net (216.58.216.100): icmp_seq=2 ttl=43 time=18.5 ms

64 bytes from ord30s22-in-f100.1e100.net (216.58.216.100): icmp_seq=3 ttl=43 time=18.5 ms

--- www.google.com ping statistics ---

3 packets transmitted, 3 received, 0% packet loss, time 2003ms

rtt min/avg/max/mdev = 18.501/18.539/18.586/0.035 ms

• To recap: we have an original image (called “ubuntu”), downloaded
from Docker Hub, and a new image (called “ubuntu_with_ping”),
created by us extending the “ubuntu” image (i.e. installing some
packages). Let’s check:

• $ docker images

REPOSITORY TAG IMAGE ID CREATED SIZE

ubuntu_with_ping latest 3e7a8818665f 11 minutes ago 97.2MB

ubuntu latest 7698f282e524 7 days ago 69.9MB

http://www.google.com/

Corso OLSS - 2021

Cleaning up container space

35

• When you don’t need some containers anymore, it’s wise to check and
clean up some disk space. This is done with the docker system
commands.

• Check disk space used by containers with $ docker system df:
• $ docker system df

TYPE TOTAL ACTIVE SIZE RECLAIMABLE

Images 2 2 97.22MB 69.86MB (71%)

Containers 4 0 27.36MB 27.36MB (100%)

Local Volumes 0 0 0B 0B

Build Cache 0 0 0B 0B

• Reclaim disk space with $ docker system prune, then check again:
• $ docker system df

TYPE TOTAL ACTIVE SIZE RECLAIMABLE

Images 2 0 97.22MB 97.22MB (100%)

Containers 0 0 0B 0B

Local Volumes 0 0 0B 0B

Build Cache 0 0 0B 0B

Corso OLSS - 2021

Removing unused images

36

• Besides containers, you can also remove images you don’t need anymore with
docker rmi <image>:

$ docker images
REPOSITORY TAG IMAGE ID CREATED SIZE
ubuntu_with_ping latest 3e7a8818665f 29 minutes ago 97.2MB
ubuntu latest 7698f282e524 7 days ago 69.9MB

$ docker rmi ubuntu_with_ping
Untagged: ubuntu_with_ping:latest
Deleted: sha256:3e7a8818665fc7eb1be20e8d633431ad8c0bdfba05d6d11d40edd32a915708bb
Deleted: sha256:a4c24b3590e4e95c30d4d0e82d3f769cde94436a5dd473b4e7ec7bd4682ce1b7

$ docker rmi ubuntu
Untagged: ubuntu:latest
Untagged: ubuntu@sha256:f08638ec7ddc90065187e7eabdfac3c96e5ff0f6b2f1762cf31a4f49b53000a5
Deleted: sha256:7698f282e5242af2b9d2291458d4e425c75b25b0008c1e058d66b717b4c06fa9
Deleted: sha256:027b23fdf3957673017df55aa29d754121aee8a7ed5cc2898856f898e9220d2c
Deleted: sha256:0dfbdc7dee936a74958b05bc62776d5310abb129cfde4302b7bcdf0392561496
Deleted: sha256:02571d034293cb241c078d7ecbf7a84b83a5df2508f11a91de26ec38eb6122f1

$ docker system df
TYPE TOTAL ACTIVE SIZE RECLAIMABLE
Images 0 0 0B 0B
Containers 0 0 0B 0B
Local Volumes 0 0 0B 0B
Build Cache 0 0 0B 0B

Corso OLSS - 2021

Working with Docker Hub

Corso OLSS - 2021

Pushing images to Docker Hub (1)

38

• The command $ docker push <image>. This writes an image to Docker
Hub.

• In order to issue that command, you first need an account on Docker Hub: go
to https://hub.docker.com and sign up (or sign in, if you already have an
account there) – it’s free.

• Do it now.

• Click on Create Repository, make it public (careful: everybody will be
be able to see the images you upload there!) and give it a name, for
example olss_2021 (only lowercase is allowed), a description, and
click on “Create”. This will create your public repository, called e.g.
“olss_2021”.

https://hub.docker.com/

Corso OLSS - 2021

Pushing images to Docker Hub (2)

39

• To push an image (for example the ubuntu_with_ping image we created
earlier) to your new repository, we must give a tag to the image and specify
our Docker Hub username and repository as part of the image name.
• The full image name should be <username>/<repository>:<tag>.

• In my case, the first part should be “caifti/olss_2021”. As tag, you can put any string;
let’s set it to “ubuntu_with_ping_1.0”.

• In order to assign this tag to our existing image, find out its “image id” with the
docker images command:

• $ docker images

REPOSITORY TAG IMAGE ID CREATED SIZE

ubuntu_with_ping latest 7c45b9ad4de6 45 minutes ago 97.2MB

ubuntu latest 7698f282e524 7 days ago 69.9MB

• $ docker tag 7c45b9ad4de6 caifti/olss_2021:ubuntu_with_ping_1.0

• $ docker images

REPOSITORY TAG IMAGE ID CREATED SIZE

ubuntu_with_ping latest 7c45b9ad4de6 About an hour ago 97.2MB

alexcos/olss_2021 ubuntu_with_ping_1.0 7c45b9ad4de6 About an hour ago 97.2MB

ubuntu latest 7698f282e524 7 days ago 69.9MB

Images before
the new tag

Images after
the new tag

Corso OLSS - 2021

Pushing images to Docker Hub (3)

40

• Now login to Docker Hub with your username and password:
• $ docker login

Login with your Docker ID to push and pull images from Docker

Hub. If you don't have a Docker ID, head over to

https://hub.docker.com to create one.

Username:

Password:

WARNING! Your password will be stored unencrypted in

/home/ubuntu/.docker/config.json.

Configure a credential helper to remove this warning. See

https://docs.docker.com/engine/reference/commandline/login/#cred

entials-store

Login Succeeded

• Finally, we can push our image to Docker Hub:
• $ docker push caifti/olss_2021:ubuntu_with_ping_1.0

We’ll disregard
this warning here.

For more info,
see the URL in
the message.

https://docs.docker.com/engine/reference/commandline/login/

Corso OLSS - 2021

Verifying our Docker Hub repository

41

• Go to Docker Hub (https://hub.docker.com/), login with your
username, click on the “olss_2021” repository, and then on “Public
View”. You should see something like this:

https://hub.docker.com/

Corso OLSS - 2021

Handling multiple commands

42

• If you have several commands to apply to a container (for example,
you want to install many applications), you could run the container in
interactive mode as shown earlier (use the “-i” switch), and then issue
the various commands at the prompt once you are in the container.
• For example, when you are running a container interactively, you could issue a

sequence of commands such as
apt update
apt install –y wget unzip
wget <some_file>
unzip <some_other file>

…

• Once you exit from the container, remember to commit the container,
or your modifications to the container will be lost (like in our “ping”
example earlier).

Corso OLSS - 2021 43

Build images

Corso OLSS - 2021

Dockerfiles

44

• Rather than modifying a container “by hand”, connecting interactively and
then installing packages as previously shown, it is often much more
convenient to put all the required commands in a text file (called by default
Dockerfile), and then build an image executing these commands.

• As an example, through the following Dockerfile we create an image
starting from an Ubuntu image, installing a web server (through the apache2
package) and telling the image to serve a simple html page (index.html),
which we copy from our system:

$ cat Dockerfile

FROM ubuntu
ENV DEBIAN_FRONTEND=noninteractive
RUN apt update
RUN apt install -y apache2
COPY index.html /var/www/html/
EXPOSE 80
CMD ["apachectl", "-D", "FOREGROUND"]

This Dockerfile:
• Starts from the Ubuntu container
• Updates all installed packages
• Installs the apache2 web server
• Copies an index.html file from our system
• Exposes port 80 (the standard web port)
• Starts the apache2 web server through the

"apachectl" command

Corso OLSS - 2021

The index.html file

45

• This is the index.html file we used in the previous Dockerfile. It will just
show a greeting message:

• $ cat index.html

<!DOCTYPE html>

<html>

<h1>Hello from a web server running inside a container!</h1>

This is an exercise for the OLSS2021 course.

</html>

• Create (or download) both the previous Dockerfile and the
index.html file in your home directory.
• $ wget https://baltig.infn.it/corso-olss-2020/corso_olss_2020/-

/raw/master/containers/Dockerfile

• $ wget https://baltig.infn.it/corso-olss-2020/corso_olss_2020/-

/raw/master/containers/index.html

Corso OLSS - 2021

Build images via Dockerfiles

46

• Once we have a Dockerfile, we can create (”build”) an image and name it for
example “web_server” with the command

$ docker build –t web_server .

• Note: the . at the end the line above is important!

• We can now run our new container in the background (flag –d) simply with
$ docker run –d –p 8080:80 –-name=web_server web_server

• The -p 8080:80 part redirects port 80 on the container (the port we exposed
in the Dockerfile) to port 8080 on the host system (that is, VM1).

• Check that everything works opening in a browser the page
http://<VM1_ip_address>:8080/

• Try it now!

http://localhost:8080/

Corso OLSS - 2021

Check that our web server is running

47

• Check with:
$ docker ps

CONTAINER

ID IMAGE COMMAND CREATED STATUS P

ORTS NAMES

f9dc164be001 web_server "apachectl -D FOREGR…" 12 minutes ago Up 12

minutes 0.0.0.0:8080->80/tcp laughing_pare

• Stop the container with:
$ docker stop f9dc164be001

• You can now type
$ docker run –d –p 8080:80 web_server

to instantiate a new web server.

What happens if you type
$ docker run –d –p 8081:80 web_server ?

Corso OLSS - 2021 48

Docker layers

Corso OLSS - 2021

• Dokerfile
• A series of instruction for building images

• Each Dockerfile command creates a Layer

• Only ADD, RUN and COPY influence the
size of the image

• Container layers
• From image to container

Container Layers

Corso OLSS - 2020 49

•$ cat Dockerfile

FROM ubuntu

ENV DEBIAN_FRONTEND=noninteractive

RUN apt update

RUN apt install -y apache2

COPY index.html /var/www/html/

EXPOSE 80

CMD ["apachectl", "-D", "FOREGROUND"]

Corso OLSS - 2021

$ docker build -t web_server .

Sending build context to Docker daemon 3.072kB

Step 1/7 : FROM ubuntu

latest: Pulling from library/ubuntu

a70d879fa598: Pull complete

c4394a92d1f8: Pull complete

10e6159c56c0: Pull complete

Digest:
sha256:3c9c713e0979e9bd6061ed52ac1e9e1f246c9495aa06361
9d9d695fb8039aa1f

Status: Downloaded newer image for ubuntu:latest

---> 26b77e58432b

Step 2/7 : ENV DEBIAN_FRONTEND=noninteractive

---> Running in 02d8ddcd78de

Removing intermediate container 02d8ddcd78de

---> be8e0da46ada

Step 3/7 : RUN apt update

---> Running in bd5a1f1828c9

Removing intermediate container bd5a1f1828c9

---> fdfd77a871e9

Image building process

Corso OLSS - 2020 50

Step 4/7 : RUN apt install -y apache2

---> Running in 0af7fad77c22Removing
intermediate container 0af7fad77c22

---> e7748d3c4880

Step 5/7 : COPY index.html /var/www/html/

---> 1e624144130e

Step 6/7 : EXPOSE 80

---> Running in dc2da127dfd4

Removing intermediate container dc2da127dfd4

---> 0e61f433ab18

Step 7/7 : CMD ["apachectl", "-D",
"FOREGROUND"]

---> Running in a5829e92006a

Removing intermediate container a5829e92006a

---> 62d58cfe544e

Successfully built 62d58cfe544e

Successfully tagged web_server:latest

Corso OLSS - 2021

$ docker images

REPOSITORY TAG IMAGE ID CREATED SIZE

web_server latest 62d58cfe544e 5 minutes ago 214MB

ubuntu latest 26b77e58432b 2 weeks ago 72.9MB

hello-world latest d1165f221234 6 weeks ago 13.3kB

$ docker history 62d58cfe544e

IMAGE CREATED CREATED BY SIZE COMMENT

62d58cfe544e 8 minutes ago /bin/sh -c #(nop) CMD ["apachectl" "-D" "FO… 0B

0e61f433ab18 8 minutes ago /bin/sh -c #(nop) EXPOSE 80 0B

1e624144130e 8 minutes ago /bin/sh -c #(nop) COPY file:6bbba72179c3da84… 137B

e7748d3c4880 8 minutes ago /bin/sh -c apt install -y apache2 113MB

fdfd77a871e9 9 minutes ago /bin/sh -c apt update 27.9MB

be8e0da46ada 9 minutes ago /bin/sh -c #(nop) ENV DEBIAN_FRONTEND=nonin… 0B

26b77e58432b 2 weeks ago /bin/sh -c #(nop) CMD ["/bin/bash"] 0B

<missing> 2 weeks ago /bin/sh -c mkdir -p /run/systemd && echo 'do… 7B

<missing> 2 weeks ago /bin/sh -c [-z "$(apt-get indextargets)"] 0B

<missing> 2 weeks ago /bin/sh -c set -xe && echo '#!/bin/sh' > /… 811B

<missing> 2 weeks ago /bin/sh -c #(nop) ADD file:27277aee655dd263e… 72.9MB

Inspect image building

Corso OLSS - 2020 51

Corso OLSS - 2021

• More layers mean a larger image
• The larger the image, the longer that it takes to build, push and pull

• Smaller images mean faster builds and deploys

• How reduce layers
• Use shared base images (where possible)
• Limit the data written on the container layers
• Chain RUN statemets

• Some links
• https://dzone.com/articles/docker-layers-explained
• https://stackoverflow.com/questions/32738262/whats-the-differences-between-

layer-and-image-in-docker

Reduce Layers

Corso OLSS - 2020 52

https://dzone.com/articles/docker-layers-explained
https://stackoverflow.com/questions/32738262/whats-the-differences-between-layer-and-image-in-docker

Corso OLSS - 2021 53

Docker volumes

Corso OLSS - 2021

Containers are ephemeral

54

• An important point to remember is that any data that is created within a running
container is only available within the container, and only when the container is
running.

• Let’s prove this. Run a container using the Ubuntu image in interactive mode:
$ docker run -it ubuntu /bin/bash

• Once in the container, create a file and verify it is there:
root@2000824922fb:/# touch my_new_file # this creates an empty file in the container file
system

root@2000824922fb:/# ls
bin boot dev etc home lib lib64 media mnt my_new_file opt proc root run sbin s
rv sys tmp usr var

root@2000824922fb:/#

• Now exit from the container. Run it again with the same command as above
$ docker run -it ubuntu /bin/bash

• Is the file still there? (it should not!)
• It is not there because every time you do docker run above you start a new Ubuntu container.

Corso OLSS - 2021

Connect a container to a host file system

55

• So, what if we want to retain data within a container?

• We can map a directory that is available on the host (the system where
we run the docker command, e.g. VM1), to a directory that is available
on the container. This is done with the docker flag -v, like this:
$ docker run -v /host/directory:/container/directory <other docker arguments>

• So, for example, create a directory local_data . Let’s map this
directory to the directory /cointainer_data on the container:
$ docker run -v /<path_to>/local_data/:/container_data -it ubuntu /bin/bash

• Now, when you are within the container, if you write ls
/container_data you should see files from local_data. Do it now.

Corso OLSS - 2021

Docker volume (1)

56

• In the previous slide, we mapped a directory that was available on the host to
a directory on the container.

• But what if we want to copy or move our docker container to a different
host, with a different directory structure? Or perhaps with a different
operating system? Remember that Docker promises to be system-
independent.

• We can (and should generally prefer to) use Docker volumes.

Corso OLSS - 2021

Docker volume (2)

57

• Volumes are the preferred mechanism for persisting data generated by and
used by Docker containers.

• While bind mounts are dependent on the directory structure and OS of the
host machine, volumes are completely managed by Docker. Volumes have
several advantages over bind mounts:
• Volumes are easier to back up or migrate than bind mounts.

• You can manage volumes using Docker CLI commands or the Docker API.

• Volumes work on both Linux and Windows containers.

• Volumes can be more safely shared among multiple containers.

• Volumes are often a better choice than persisting data in a container’s
writable layer
• a volume does not increase the size of the containers using it.

Corso OLSS - 2021

Connect a container to a Docker volume

58

• You can create a new Docker volume with the command
$ docker volume create my-volume

• Try these self-explanatory commands:
$ docker volume ls

$ docker volume inspect my-volume

• You can also start a container with a volume which does not exist yet
with the -v flag. It will be automatically created:
$ docker run –it --name myname -v my-volume:/app ubuntu /bin/bash

• Notice that we also introduced here the flag --name to give an explicit name
(here: myname) to a container.

• In this case, check the volume with the command docker inspect myname
and look for the Mounts section. Try it now: what do you see?

Corso OLSS - 2021

Removing docker volumes

59

• As we said, Docker volumes are directly managed by Docker, in some
Docker-specific area (see the docker inspect command we used
earlier to know more). They use up space in the local file system.

• When you do not need a docker volume anymore, it is wise to reclaim
its space:
$ docker volume rm <volume_name>

• Can you remove a volume which is being used by a container? Try.

• You can also use (unused volumes)
$ docker volume prune

Note that the previous command $ docker system prune does not remove
volumes!

Corso OLSS - 2021 60

Docker-compose

Corso OLSS - 2021

Application stacks: docker-compose

61

• We have seen how easy it is to create and run a Docker container,
pulling images from Docker Hub.
• We then learned how to extend an image, either manually adding packages to

it (and then committing the changes), or writing a Dockerfile to automatize the
process. We now also know how to export an image to a tar file, for example
because we want to share it without using Docker Hub, or to save it for backup
purposes.

• We will now move on to consider how to create “application stacks”:
that is, how to create multiple containers linked together to provide a
multi-container service, all on a single VM.

• This is done via the docker-compose command.

Corso OLSS - 2021

A scenario for docker-compose

62

• docker-compose works by parsing a text file, written in the YAML
language (see https://yaml.org for more info). This file, which is
normally called docker-compose.yml, defines how our application
stack is structured.

• We will now use docker-compose to create and launch an application
stack made of two connected containers, both running on
VM/your_local_computer:

1. A MySQL database. It won’t be accessible from the Internet.

2. A WordPress instance. It will be accessible from the Internet. WordPress
(https://wordpress.org) is a very popular (open source) software used to
create websites or blogs.

https://yaml.org/
https://wordpress.org/

Corso OLSS - 2021

Our app stack architecture

63

App-specific
private network

(backend)

Database for
WordPressWordPress

Web server

Internet

VM/local_computer

App-specific
public network

(frontend)

Corso OLSS - 2021

docker-compose.yml

64

version: '3'

services:

database:

image: mysql:5.7

environment:

- MYSQL_USER=wordpress

- MYSQL_PASSWORD=olss_passwd

- MYSQL_DATABASE=wordpress

- MYSQL_RANDOM_ROOT_PASSWORD=true

networks:

- backend

wordpress:

image: wordpress

depends_on:

- database

environment:

- WORDPRESS_DB_HOST=database

- WORDPRESS_DB_USER=wordpress

- WORDPRESS_DB_PASSWORD=olss_passwd

- WORDPRESS_DB_NAME=wordpress

ports:

- 8080:80

networks:

- backend

- frontend

networks:

backend:

driver: bridge

frontend:

driver: bridge

This builds the container for the database,
with only the “backend” network

This builds the container for WordPress,
with both the “backend” and “frontend” networks

Port 8080 on the host (VM)
is mapped to port 80 on the

container

“Obvious” note: although this is just for a demo,
do not use the passwords shown in this screen!

Note that here we refer
to the other containerContainer image for mySQL

(from Docker Hub)

Container image for WordPress
(from Docker Hub, latest)

Configuration variables
for the container software

Corso OLSS - 2021

Build & run the application stack

65

• Check if docker-compose is available
$ docker-compose --version

• On VM1, create or download the docker-compose.yaml
$ wget https://baltig.infn.it/corso-olss-2020/corso_olss_2020/-
/raw/master/containers/docker-compose.yaml

• On VM1, build the application stack:
$ docker-compose up –-build –-no-start

• Now start it:
$ docker-compose start

• If you now open a browser pointing to VM1’s public address on port 8080 (look at the previous
docker-compose.yml), you should get the set up page for WordPress on the right.
Go on and set it up.

• Once WordPress is set up, you should see the default WordPress
home page, similar to the one on the right (which of course you
can graphically customize).

• Once the app stack is started, the running containers can be seen
with the usual docker ps command.

• The application stack can be stopped with:
$ docker-compose stop

• Try it yourself now.

Corso OLSS - 2021

Stop and Delete your services

66

• If you want to stop the services
$ docker-compose stop

Stopping costa_wordpress_1 ... done

Stopping costa_database_1 ... done

• If you want to delete the services
$ docker-compose down -v

Stopping costa_wordpress_1 ... done

Stopping costa_database_1 ... done

Removing costa_wordpress_1 ... done

Removing costa_database_1 ... done

Removing network costa_backend

Removing network costa_frontend

Corso OLSS - 2021

Specifying volumes in docker-compose

67

• If you wish to use docker volumes, they can also be specified in the
docker-compose YAML file. For example:
version: ‘3’

volumes:

wordpress:

db:

services:

wordpress:

volumes:

- wordpress:/var/www/html

[…]

database:

volumes:

- db:/var/lib/mysql

[…]

This automatically creates the Docker volume
wordpress, mapping it to the directory

/var/vvv/html on the container

Corso OLSS - 2021

Limitations of docker-compose

68

• As seen, docker-compose is very handy to create combinations of
containers running on the same machine (VM1 in our case).

• It is best suitable if you don’t need automatic scaling of resources or
multi-server environments.

• For complex set ups, other tools such as Docker Swarm or Kubernetes
are more appropriate. You’ll see them in the next lectures.

Corso OLSS - 2021 69

Docker: best practices and security

Corso OLSS - 2021

Some best practices for writing containers

70

1. Put a single application per container. For example, do not
run an application and a database used by the application
in the same container.

2. Do not confuse RUN with CMD.
• RUN runs a command and commits the result;
• CMD does not execute anything at build time, it specifies the intended command for the

image.

3. If in a Dockerfile you have layers that change often,
put them at the bottom of the Dockerfile. This way, you
speed up the process of building the image.

4. Keep it small:

• use the smallest base image possible, remove
unnecessary tools, install only what is needed.

5. Properly tag your images, so that it is clear which version
of a software it refers to.

6. Do you really want / can you use a public image?
Think about possible vulnerabilities, but also about
potential license issues.

More (and more detailed) information available at
https://bit.ly/2Zr6Hyq

https://bit.ly/2Zr6Hyq

Corso OLSS - 2021

A few words on Docker security (1)

71

• As seen so far, if you want to run Docker containers, you need to have Docker
installed on your host system.

• If Docker is not installed, you can install it yourself, but you must have root access.

• Once you have installed Docker, you can download and execute containers from
DockerHub or other sources.

• Careful, because this is a potentially big security threat: some containers that you download
might be compromised (e.g. include viruses or trojan)!

• Passwords, certificates, encryption keys, etc.

• Do not embed them into the containers, and do not store them e.g. in GitHub repositories!

Corso OLSS - 2021

Recap of Containers

72

• We covered the basic concepts about Containers, comparing them to Virtual
Machines.

• We executed a container, list docker images and extend them to create new
containers.

• We then saw how to push containers to repositories on Docker Hub and simplified
the building of containers via Dockerfiles.

• We created a container serving web pages and we then connected containers to
volumes.

• We studied also how to combine multiple containers in an application stack with
docker-compose.

• We then discussed about some Docker limitations, in particular with regard to
security

Corso OLSS - 2021 73

Container Networking

Corso OLSS - 2021

Networking in containers

74

• Containers isolate applications from each other and from a physical
infrastructures.

• But typically container may also need to connect to somewhere; for
instance, to other containers, or in general to the internet.

• Remember that Docker containers live inside a host
(called “Docker host”). That host normally has one or
more IP addresses of its own, connected to a
physical or virtual network interface, used e.g. by
applications running on the host.
• Docker containers, which are software appliances, use

virtual network interfaces to connect to the outside world.

• We will now see how.

Docker Host

Container 2

ethernet interface 192.168.1.2

The world out there

?
App running
on the host

Container 1

?

Corso OLSS - 2021

Before we continue…

75

• In the hands-on exercises for this part, we will use the Alpine
container. It is a Docker official image for the Alpine Linux distribution
(https://www.alpinelinux.org/), a lightweight Linux distribution.

Compare:
ubuntu@VM1:~$ docker images alpine

REPOSITORY TAG IMAGE ID CREATED SIZE

alpine latest f70734b6a266 5 weeks ago 5.61MB

ubuntu@VM1:~$ docker images ubuntu

REPOSITORY TAG IMAGE ID CREATED SIZE

ubuntu latest 1d622ef86b13 5 weeks ago 73.9MB

• You may check the details of the interfaces on a Docker host or on a
container with the command
$ ip address show

https://www.alpinelinux.org/

Corso OLSS - 2021

Check the network interfaces on VM1

76

centos@VM1:~$ ip address show

1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN group default qlen 1000

link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00

inet 127.0.0.1/8 scope host lo

valid_lft forever preferred_lft forever

inet6 ::1/128 scope host

valid_lft forever preferred_lft forever

2: eth0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP group default qlen 1000

link/ether fa:16:3e:58:ca:ab brd ff:ff:ff:ff:ff:ff

inet 192.168.1.26/24 brd 192.168.1.255 scope global dynamic eth0

valid_lft 63732sec preferred_lft 63732sec

inet6 fe80::f816:3eff:fe58:caab/64 scope link

valid_lft forever preferred_lft forever

3: docker0: <NO-CARRIER,BROADCAST,MULTICAST,UP> mtu 1500 qdisc noqueue state DOWN group default

link/ether 02:42:95:de:43:5e brd ff:ff:ff:ff:ff:ff

inet 172.17.0.1/16 brd 172.17.255.255 scope global docker0

valid_lft forever preferred_lft forever

inet6 fe80::42:95ff:fede:435e/64 scope link

valid_lft forever preferred_lft forever

centos@VM1:~$

eth0 is the interface
of the host

172.31.17.119 is the
IPv4 address of the host

This docker0 interface
is an ethernet bridge device

lo is the “loopback interface”
(we’ll ignore it here)

Corso OLSS - 2021

Docker networking options

77

• There are several ways to handle networking with Docker containers.
We will discuss here the following:
• No networking.

• Bridge networking. This is the default if you don’t specify anything else.

• Host networking.

• Overlay networking.

• Macvlan.

• These options are selected using the flag
--network=<network_type>

in commands such as docker run.

Corso OLSS - 2021

The --network=none option

78

• Sometimes you just don’t need or want to connect a Docker container
to the network.
• Maybe you just want to create a container and use it locally to your host to run

some jobs, and that’s it.

• On VM1, type
$ docker run -it --network=none alpine /bin/sh

Once logged in, run ip address show. You will see that the container has no
ip addresses other than the loopback IP address (which is always 127.0.0.1).

• In this case, there is no way to connect to the container except than with
docker commands such as docker run or docker exec.

• Since there is no IP address on the container, no IP communications to/from
the container are possible.

Corso OLSS - 2021

Bridge networking

79

• This is the default networking option for Docker. A “bridge” is a type of
network device making it possible to transfer packets between devices on
the same network segment.
• For example, if you have 2 laptops at home, you may connect them with each other

via a physical “bridge” (sometimes called also a “switch”) – we won’t discuss the
differences between bridges, switches and hubs here.

• With Docker, we deal with virtual (rather than physical) bridges. Docker
always creates a default bridge called in fact bridge. You can see it if you
issue the command
$ docker network ls

NETWORK ID NAME DRIVER SCOPE

9b88500f1da1 bridge bridge local

320bf6394a48 host host local

a89c28f34f85 none null local

Corso OLSS - 2021

Multiple bridges (1)

80

• Containers connected to the same
bridge do communicate with
each other.

Container 1 Container 2

Bridge A

• Let’s start two Alpine containers without specifying any --network option. Open
two separate ssh terminals on VM1 and run the following commands:
$ docker run -td --name test1 alpine
$ docker run -td --name test2 alpine

• Access the container
$ docker exec -it test1 /bin/sh

• Run /# ip address show eth0 on each container. You will see that both have an
IP address on the same network, something like 172.17.0.x.

• Are the two containers able to communicate with each other? (hint: ping)
• Both containers are connected to the same default bridge (called bridge).

Corso OLSS - 2021

Multiple bridges (2)

81

• Containers connected to
different bridges do not
communicate with each other.

Container 1 Container 2 Container 3 Container 4

Bridge A Bridge B

• Now create a second bridge on VM1 (called a user-defined bridge):
$ docker network create my-bridge

• List the bridges with $ docker network ls and confirm that my-bridge is
there.

• Create the test3 container, and connect it directly to my-bridge:
$ docker run -itd --network=my-bridge --name=test3 alpine

• Are the containers still able to communicate with each other?
• Two containera are connected to the bridge bridge, the other to the bridge my-
bridge.

• Check the IP address on test3 now.

X

Corso OLSS - 2021

Connecting to multiple bridges

82

• You may also connect a container to more than one bridge. This is
possible with the
docker network connect <bridge> <container> command (note:
not directly with the docker run command).

• Disconnect a container from a bridge with
docker network disconnect <bridge> <container>

• Try it yourself with 3 or 4 containers, of which
one is connected to two bridges.
What will happen in this case?

Container 1 Container 2

Container 3 Container 4

Bridge A

Bridge B

Corso OLSS - 2021

Inspecting bridges

83

• The configuration of a bridge can be shown with
$ docker network inspect <bridge>

• This will emit some JSON output with information such as the IP range
associated to the bridge and the containers (if any) connected to it.

• Try it out with $ docker network inspect my-bridge

• A single-line, nerdy way of parsing the output of this command to
show just the containers connected to a bridge :

$ docker network inspect my-bridge | python -c "import

sys, json; print([v['Name'] for k,v in

json.load(sys.stdin)[0]['Containers'].items()])"

Corso OLSS - 2021

What is my IP address?

84

• We have seen that containers connected to different bridges do not see each
other. But they can connect to the internet.

• Try it for yourself: from the test1 container connected to my-bridge, issue the
command ping www.google.com and verify that it works.

• Do the following on test1:
/# apk update && apk add bind-tools

This will install a utility called dig (for domain information groper, used to query
the DNS). Note that Alpine Linux uses the command apk (and not apt as in
Ubuntu) to install packages.

• Now with the command

/# dig +short myip.opendns.com @resolver1.opendns.com

you will see the real IP address that your test1 container uses to connect to the
internet.

http://www.google.com/

Corso OLSS - 2021

Network Address Translation (NAT)

85

• Our test1 container was able to ping the internet. However, it was not
able to ping another container on the same Docker host, but
connected to a different bridge.

• We also just discovered that, when connecting to the internet, test1
uses an IP address that is not its own.

• This is because the Docker engine on VM1 performs an automatic
Network Address Translation (NAT) when test1 wants to connect to
the outside world, transparently mapping the test1 IP address (the
one you see with #/ ip address show) to the IP address of the
Docker host.

Corso OLSS - 2021

Host networking

86

• We have seen the options --network=none and --network=bridge.

• Another option is host networking, specified with --network=host.
This connects a container directly to the Docker host network interface
and avoids using NAT (which could be useful e.g. for performance
purposes).
• The container does not get any IP addresses of its own and uses directly the

Docker host IP address.

• This means that port mapping does not make sense with host networking (the
container shares the same ports of the Docker host). It also means that you
cannot have two containers in host mode running a service on the same port.

• Host networking is used in special cases. We won’t discuss it more here.

Corso OLSS - 2021

The main types of Docker networks covered

87

bridge none host

docker0
172.17.0.1

Container 3
172.17.0.4

Container 4
172.17.0.4

Container 1
172.17.0.2

Container 2
172.17.0.3

docker run alpine

Docker Host Docker Host

Container

docker run alpine --network=none

Docker Host

docker run alpine --network=host

Container 1
port 5000

Container 2
port 5000

Corso OLSS - 2021

Overlay networks

88

• So far, we have considered network configurations that were
applicable to containers running on the same Docker host.

• Docker overlay networks connect Docker daemons running on
multiple hosts.
• VXLAN used for encapsulation as network virtualization technology

Container 1
172.17.0.2

Container 2
172.17.0.3

Docker Host

docker0
172.17.0.1

Container 1
172.17.0.2

Container 2
172.17.0.3

Docker Host

docker0
172.17.0.1

Container 1
172.17.0.2

Container 2
172.17.0.3

Docker Host

docker0
172.17.0.1

Overlay network
10.1.1.0

Container A Container B Container C

Corso OLSS - 2021

Macvlan networks

89

• Macvlan networks allow to assign a MAC address to a container,
making it appear as a physical device on your network.

• The Docker daemon routes traffic to containers by their MAC
addresses.

• Using the macvlan driver is sometimes the best choice when dealing
with legacy applications that expect to be directly connected to the
physical network, rather than routed through the Docker host’s
network stack.

• See Macvlan networks.

https://docs.docker.com/network/macvlan/

Corso OLSS - 2021 90

Docker management

Corso OLSS - 2021

Process management

91

• Once you start a container, you may want to check how it is going. For example, which are
the running processes, or how much CPU of the Docker host it is using, or RAM, etc.
Possibly you can log in to the container and issue commands there, but it is very useful to
verify what containers are doing directly from the Docker host.

• Example: suppose we want to compute Pi using the Leibniz formula:

𝜋 =෍

𝑖=0

∞
4(−1)𝑖

2𝑖 + 1

• Let’s implement it with a very simple Python program, call it for example mypi.py:

pi = 0
accuracy = 1000000

for i in range(0, accuracy):
pi += ((4.0 * (-1)**i) / (2*i + 1))
print(pi)

Corso OLSS - 2021

Process management: docker top

92

• On VM1, create a container called e.g. test1 (if you had a test1 container
earlier, remember to delete it first with docker rm test1) with
$ docker run -it --name test1 alpine /bin/sh

• Connect to test1 and install python:
$ apk update && apk add python2

• Now create the mypi.py program on test1 (you may take it from IOL) and
run it simply with python mypi.py. It will take some time to finish; the
Leibniz formula is not very efficient to compute Pi.
• /# wget https://baltig.infn.it/corso-olss-
2020/corso_olss_2020/-/raw/master/containers/mypi.py

• Now open another terminal on VM1 and type docker top test1: you
should see the running processes on test1, something like
$ docker top test1
PID USER TIME COMMAND
50725 root 0:00 /bin/sh
50824 root 0:15 python mypi.py

Corso OLSS - 2021

Process management: docker stats

93

• While the mypi.py program is still running, type docker stats
test1 on VM1. It should output something like this:
$ docker stats test1

CONTAINER ID NAME CPU % MEM USAGE / LIMIT MEM % NET I/O BLOCK I/O PIDS

3fa7f0adb613 test1 42.50% 44.19MiB / 3.848GiB 1.12% 17MB / 194kB 0B / 0B 2

• The docker stats command displays a live stream of container
resource usage statistics. It is live, so it refreshes automatically.
Interrupt with Ctrl-C.

• This is quite useful in order to check that a container is doing what it is
supposed to do, but how can we limit the resources available to a
container?

This is the percentage of the Docker host’s CPU and memory the container is using

Corso OLSS - 2021

Why limit resources for containers

94

• By default, a container has no resource constraints and can therefore
use up Docker hosts resources as much as it is allowed by the Docker
host kernel scheduler.

• For example, if you do not limit the memory a container uses, the
Docker host could run out of memory and throw an Out of Memory
exception.

• In practice, if a Docker host runs out of memory for example because
of a container misbehaving, the entire system could just crash (i.e, all
the other processes or containers running on the host will crash).

Corso OLSS - 2021

Some ways to limit resources for containers

95

• Check first with docker stats what your container is doing with
resources.

• You can then limit e.g. memory to 256MB for a nginx container with
$ docker run -d -p 8080:80 --memory="256m" nginx

• Similarly, you can limit the number of CPU cores that a container may
use with
$ docker run -d -p 8080:80 --cpus=".5" nginx

This will limit the container to use up to half a CPU core.

• More information on this topic can be found at
https://docs.docker.com/config/containers/resource_constraints/

https://docs.docker.com/config/containers/resource_constraints/

Corso OLSS - 2021

Logging container behavior

96

• Especially when a container is running in the background and you are not able to
check its behavior interactively from within the container, it is very useful to checks
what it is writing to STDOUT and STDERR.

• For example, suppose we run the following command on VM1:
$ docker run -d --name test1 alpine /bin/sh -c "while true; do
$(echo date); sleep 1; done"

• This creates the test1 container using the Alpine image, running it in background
(-d) and executing an infinite loop printing the current date to STDOUT every
second.

• The container is running in the background, but you may check what it is printing
with the command. Try it out.

• $docker logs --follow test1

• You may limit logs output to e.g. the last 10 lines with
$ docker logs --tail 10 test1

• Once done, stop the test1 container running in the background with
$ docker stop test1

Corso OLSS - 2021

Graphical Docker management

97

• So far, we have seen ways to manage containers via the terminal. This
is the normal and preferred way to do it, especially when learning
Docker concepts.

• However, there are also ways to manage containers graphically. This
can be very handy.

• We will briefly explore here the use of the open source tool called
Portainer, https://www.portainer.io/. Its scope is to build and manage
Docker environments directly from a browser.

https://www.portainer.io/

Corso OLSS - 2021

Graphical Docker management

98

• Run Portrainer as a container in the local host
$ docker volume create portainer_data

$ docker run -d -p 8080:9000 --name=portainer --restart=always -v
/var/run/docker.sock:/var/run/docker.sock -v portainer_data:/data

portainer/portainer-ce

