
Advanced GIT

Advanced features

 git cherry-pick
 git stash
 git bisect
 Partial commits
 git filter-branch
 git rebase
 git rerere
 git pickaxe
 git submodule

stash

 Save changes to your working copy
WITHOUT commiting them
git stash

stash

 There can be multiple stashes, each with a
name.
git stash list

 You can apply a stash other than the last
one.
git stash apply <stash name>

 Applying a stash does not delete it.
git stash drop <stash name>

git cherry-pick

 The ability to get a specific commit from a
branch and merge *only that commit* on a
different branch.
Also known as: “backport fix for bug ##### to

an older branch.”
This is a merge operation. Conflicts may

occur and will have to be resolved normally

git cherry-pick

 Usage:
git cherry-pick <commit>

 Will merge commit <commit> on the current
branch.

 If you are merging from a public branch, add “-x”,
i.e.:

 git cherry-pick –x <commit>
 Reason: Will add a note to the commit message

specifying the source of the cherry-pick

git pickaxe

 Also known as git log –S or git log -G
When did you change something?
Search the whole history of git to find out!

 git log –S<string>
Shows commits where the number of

occurrences of <string> changed
 git log –G<regex>

Shows commit where there are
additions/deletions of the current regex.

Partial commits

 Many modifications?
 Logically different?
 Split them into different commits!
 git add -p <file>

Allows to edit what exactly gets staged

 Example

git bisect

 Also known as “automated debug.”
 When and How did I break feature X?
 Suppose you introduced a bug somewhere in

your code.
 If you can detect a commit which clearly HAS

bug, and another which HAS NOT the bug, then
git can tell you exactly when it was introduced.

git bisect -- usage

 git bisect start
 git bisect bad <commit>

 This commit has the bug

 git bisect good <commit2>
 This commit does not have the bug

 From now on, git starts a binary search on all
commits included between the two, to discover
where the bug happened

git bisect -- usage

 Git will have checked out a revision.
 Test it.

 Does it have the bug?
 YES: git bisect bad
 NO: git bisect good

 Another checkout will be done. Iterate
 Eventually, you will have reached a single

commit.
 That commit will have introduced the bug

git bisect – automated usage

 Not very convenient – You have to manually test each
one.

 However, if you can script the test somehow…
 make a script

 It should return:
 0 – no bug
 125 – cannot be tested
 1-124, 126-127 – bug present

 The do:
 git bisect run <script>

 When this command returns, the commit that introduced the bug
will be checked out.

git bisect – automated usage

 Note that builds failing may muddle this
If the commit which introduced the bug was a

build failure, you would get the first commit
after that that actually builds as a result

Hence why: Rebase usage case 1.

Reminder

 In git, the name of a “branch” is in reality
an alias to the LAST commit on that
“branch”
Follow the EXPERT version of this course to

see why branch is between quotation marks.
There is no EXPERT version yet.

git rerere

 Rerere
REuse REcorded Resolutions
Allows git to record how you solved a

particular conflict, and to resolve it
automatically from then on.
 But why should I be interested? I solved it, after

all.

rerere – use cases

 You have several topic branches that you want
to occasionally merge in a single one to test it.
 It will have conflicts.
 You will have to resolve them
 But in case of failure, you want to blow away the

merge commit(s)
 Without rerere, this means that you will have to re-

resolve the same conflicts the next time

rerere -- usecases

 Want to make sure that you can merge cleanly with another branch.
 Without rerere:

 Periodically do a ‘git merge branch’
 Resolve all the conflicts

 There may be many many many many of them.
 git commit

 With rerere:
 Periodically do a ‘git merge branch’
 Resolve few conflicts
 Blow away the merge commit

 Rerere will keep track of your resolutions, and reapply them in the next merge
 At the end: do a ‘git merge branch’

 Resolve only the latest conflicts
 git commit

rerere – hot to use it

 rerere usage is automatic when you do a
merge
You just need to activate it

 git config –global rerere.enabled 1

git rebase

 The main topic of this part
 git rebase allows you to rewrite your

history.
It alters the repository so that the commits you

can see before and after its usage are
different.
 It can change, merge, split, add, remove, modify

commits

git rebase

 IT IS A DANGEROUS COMMAND!
 If you change history, you will break merges for

EVERYONE that has already ‘pulled’ your branch.
 git tries to protect you from it

 If it detects that pushing will probably cause it, it tries to stop
you.

 git push will fail
 You will have to use a different syntax to go ahead anyway.

 However, you should not rely on this

git rebase

 Simple ground rules:
 No commit should EVER be rebased if it is already public.

 If you have already “pushed” it, or
 If you have “pulled” or “fetched” it, or
 These include commits inherited from branches created from

“pushed” or “pulled” ones.
 No commit should be rebase if:

 You have merged it on a different branch
 This latter will not break other users, but it *will * break your local

merges and rerere.

 A suggestion:
 Even if you can use it, do not go overboard.
 Only use it on private branches you have not merged anywhere.

git rebase

 Two main usages:
Batch
Interactive

git rebase – batch usage

 Takes a branch, and modify it to make it look like
the branch never existed, and the dev. Was
done directly off another branch.

 Example:
 A-B-C-D master
 \-E-F-G topic

 Becomes:
 A-B-C-D-E’-F’-G’ master

 From ‘topic’ branch: ‘git rebase master’

git rebase – batch usage

 git rebase does an actual merge
 Merges may have conflict. You have three choices
 Solve the conflicts:

 git add the resolutions
 git rebase –continue

 Skip this commit
 git rebase –skip

 Abort the rebase
 git rebase --abort

git rebase – batch usage

 You can also change the tree structure of
your repository.
E.g: you have master, branch A forked from

master, branch B forked from A
After: git rebase –onto master A B

 Now, branch B is forked from the HEAD of master

a-b-c master a-b-c master

 \-d-e A -> | \-f’-g’ B

 \-f-g B \-d-e A

git rebase – batch commands

 Finally, you can delete commits:
A-B-C-D-E-F master

 git rebase –onto master~5 master~2
master
A-E’-F’ master

git rebase – interactive commands

 git rebase –i <commit>
<commit> should be the commit BEFORE the

first one you wish to alter.
Will open your $EDITOR with the following

buffer:

git rebase – interactive usage

pick d6a7c25 Added README file.
pick dce0696 changed README file.
pick 8e5ba04 Makefile
pick b42cffd rgheguie
pick 2306a37 new line.

Rebase 68bcfea..2306a37 onto 68bcfea
#
Commands:
p, pick = use commit
r, reword = use commit, but edit the commit message
e, edit = use commit, but stop for amending
s, squash = use commit, but meld into previous commit
f, fixup = like "squash", but discard this commit's log message
x, exec = run command (the rest of the line) using shell
d, drop = remove commit
These lines can be re-ordered; they are executed from top to bottom
If you remove a line here THAT COMMIT WILL BE LOST.
However, if you remove everything, the rebase will be aborted.
Note that empty commits are commented out

git rebase – interactive usage

 If you do nothing, or remove all the lines,
nothing happens

 squash – This commit gets deleted, but its
contents are added to the previous
commit. Commit messages are merged.

 fixup – Like squash, but the commit
message gets lost

git rebase – interactive usage

 reword – change the commit message
 edit – stop there to allow modifying the

commit

 edit is the more interesting here:

git rebase – interactive usage

 When the rebasing arrives at an “edit” commit, you get
the command line back.

 At that point, you can do whatever you wish:
 Splitting the commit

 git reset HEAD^
 git add file1 ; git commit ; git add file2 ; git commit

 Adding files
 Git add file3 ; git commit

 Etc…

 Afterwards:
 git rebase --continue

git rebase -- reminder

 Simple ground rules:
 No commit should EVER be rebased if it is already public.

 If you have already “pushed” it, or
 If you have “pulled” or “fetched” it, or
 These include commits inherited from branches created from

“pushed” or “pulled” ones.
 No commit should ever be rebased if:

 You have merged it on a different branch
 This latter will not break other users, but it will break your local merges

and rerere.

 A suggestion:
 Even if you can use it, do not go overboard.
 Only use it on private branches you have not merged anywhere.

git rebase – why and when

 So, when and how should I do it?
I have found only two practical usages.

git rebase - usage 1

 On a topic branch:
Commit early and often.

 Who cares if it does not build? It’s private
 Keep track of your work

Before merging on a release branch, rebase
as to make sure that all commits at least build.
 Why? Because otherwise ‘git bisect’ breaks.

git rebase - usage 2

 On a branch you wished ‘pulled’ by
someone else
Do a git rebase to ensure clean pulling
DO NOT CHANGE COMMITS THAT ARE

ALREADY PUBLIC!

git submodule

 Suppose your software has dependencies.
 And that those dependencies are also held

in git repositories.
 You can add informations about them to

your program.

git submodule

 How to initialize it:
git submodule add git://repo/path/to/project.git

 This creates a directory called ‘project’

cd project; git checkout <version>
 Check out the exact version you wish to use

git commit ; git push

git submodule

 When cloning:
git clone <main repo>

 As usual
git submodule init ; git submodule update

 Updates the submodules to the correct checkout
version as set by the origin repository.

 This *will* require connectivity to the submodule
repositories.

 To DELETE a submodule:
git submodule deinit <dir>

git submodule -- notes

 Inside the submodules, by default you do not get a
branch.
 I.e: commits in there are lost by default
 You should explicitly switch to a branch,
 Commits inside it can be “pushed’ to the repo.

 But this WILL not change what gets checked out
 Need commit (and push) on the main repo

 Whenever you do a ‘git pull’ you should also do a ‘git
submodule update’

 ‘git submodule’ commands MUST be given from
outside the submodule

git submodule

 Cons:
 Needs extra work after clone
 ‘git submodule update’ destroys uncommitted changes
 Local changes cannot be kept in master repository.
 Local changes cannot be seen by remotes unless pushed

to dependency repo.
 Standard way to undo things does not work

 Pros:
 Present in standard distribution
 Clean separation between main sources and

dependencies

git filter-branch

 Applies an operation to all commits on a
branch (or all commits on a repo)

Delete content from history

 You committed a file that should not be there.
 E.g: ‘passwords’

 That file should be completely removed from
history. How?

> git filter-branch --force --index-filter 'git rm --
cached --ignore-unmatch passwords' --prune-
empty --tag-name-filter cat -- --all

> git for-each-ref --format=‘delete %(refname)’
refs/original | git update-ref –stdin

> git reflog expire –expire=now --all
> git gc --prune=now

Git signing

 Two types of signatures:
Informative

 On commits

Cryptographical
 On tags

Signing commits

 git commit -s
Adds the “signed-off by:” line to the commit

messages
Usefulness:

 In case of merge done by other developers, keeps
track of who originally wrote the code.

 Especially important if patches are exchanged via email.
Not so important with push/pull

Signing tags

 git tag -s
Signs the tag with your GPG signing key.
This does not just fixes the tag, but to all the

commits that precede it in the chain.

GPG key and keyring setup left as exercises
to the reader.

Questions?

 ?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46

