
Advanced GIT



Advanced features

 git cherry-pick
 git stash
 git bisect
 Partial commits
 git filter-branch
 git rebase
 git rerere
 git pickaxe
 git submodule



stash

 Save changes to your working copy 
WITHOUT commiting them
git stash



stash

 There can be multiple stashes, each with a 
name.
git stash list

 You can apply a stash other than the last 
one.
git stash apply <stash name>

 Applying a stash does not delete it.
git stash drop <stash name>



git cherry-pick

 The ability to get a specific commit from a 
branch and merge *only that commit* on a 
different branch.
Also known as: “backport fix for bug ##### to 

an older branch.”
This is a merge operation. Conflicts may 

occur and will have to be resolved normally



git cherry-pick

 Usage:
git cherry-pick <commit>

 Will merge commit <commit> on the current 
branch.

 If you are merging from a public branch, add “-x”, 
i.e.: 

 git cherry-pick –x <commit>
 Reason:  Will add a note to the commit message 

specifying the source of the cherry-pick



git pickaxe

 Also known as git log –S or git log -G
When did you change something?
Search the whole history of git to find out!

 git log –S<string>
Shows commits where the number of 

occurrences of <string> changed
 git log –G<regex>

Shows commit where there are 
additions/deletions of the current regex.



Partial commits

 Many modifications?
 Logically different?
 Split them into different commits!
 git add -p <file>

Allows to edit what exactly gets staged

 Example



git bisect

 Also known as “automated debug.”
 When and How did I break feature X?
 Suppose you introduced a bug somewhere in 

your code.
 If you can detect a commit which clearly HAS 

bug, and another which HAS NOT the bug, then 
git can tell you exactly when it was introduced.



git bisect -- usage

 git bisect start
 git bisect bad <commit>

 This commit has the bug

 git bisect good <commit2>
 This commit does not have the bug

 From now on, git starts a binary search on all 
commits included between the two, to discover 
where the bug happened



git bisect -- usage

 Git will have checked out a revision.
 Test it.

 Does it have the bug?
 YES: git bisect bad
 NO: git bisect good

 Another checkout will be done.  Iterate
 Eventually, you will have reached a single 

commit.
 That commit will have introduced the bug



git bisect – automated usage

 Not very convenient – You have to manually test each 
one.

 However, if you can script the test somehow…
 make a script

 It should return:
 0 – no bug
 125 – cannot be tested
 1-124, 126-127 – bug present

 The do:
 git bisect run <script>

 When this command returns, the commit that introduced the bug 
will be checked out.



git bisect – automated usage

 Note that builds failing may muddle this
If the commit which introduced the bug was a 

build failure, you would get the first commit 
after that that actually builds as a result

Hence why: Rebase usage case 1.



Reminder

 In git, the name of a “branch” is in reality 
an alias to the LAST commit on that 
“branch”
Follow the EXPERT version of this course to 

see why branch is between quotation marks.
There is no EXPERT version yet. 



git rerere

 Rerere
REuse REcorded Resolutions
Allows git to record how you solved a 

particular conflict, and to resolve it 
automatically from then on.
 But why should I be interested?  I solved it, after 

all.



rerere – use cases

 You have several topic branches that you want 
to occasionally merge in a single one to test it.
 It will have conflicts.
 You will have to resolve them
 But in case of failure, you want to blow away the 

merge commit(s)
 Without rerere, this means that you will have to re-

resolve the same conflicts the next time



rerere -- usecases

 Want to make sure that you can merge cleanly with another branch.
 Without rerere:

 Periodically do a ‘git merge branch’
 Resolve all the conflicts

 There may be many many many many of them.
 git commit

 With rerere:
 Periodically do a ‘git merge branch’
 Resolve few conflicts
 Blow away the merge commit

 Rerere will keep track of your resolutions, and reapply them in the next merge
 At the end: do a ‘git merge branch’

 Resolve only the latest conflicts
 git commit



rerere – hot to use it

 rerere usage is automatic when you do a 
merge
You just need to activate it

 git config –global rerere.enabled 1



git rebase

 The main topic of this part
 git rebase allows you to rewrite your 

history.
It alters the repository so that the commits you 

can see before and after its usage are 
different.
 It can change, merge, split, add, remove, modify 

commits



git rebase

 IT IS A DANGEROUS COMMAND!
 If you change history, you will break merges for 

EVERYONE that has already ‘pulled’ your branch.
 git tries to protect you from it

 If it detects that pushing will probably cause it, it tries to stop 
you.

 git push will fail
 You will have to use a different syntax to go ahead anyway.

 However, you should not rely on this



git rebase

 Simple ground rules:
 No commit should EVER be rebased if it is already public.

 If you have already “pushed” it, or
 If you have “pulled” or “fetched” it, or
 These include commits inherited from branches created from 

“pushed” or “pulled” ones.
 No commit should be rebase if:

 You have merged it on a different branch
 This latter will not break other users, but it *will * break your local 

merges and rerere.

 A suggestion:
 Even if you can use it, do not go overboard.
 Only use it on private branches you have not merged anywhere.



git rebase

 Two main usages:
Batch
Interactive



git rebase – batch usage

 Takes a branch, and modify it to make it look like 
the branch never existed, and the dev. Was 
done directly off another branch.

 Example:
 A-B-C-D                master
        \-E-F-G             topic

 Becomes:
 A-B-C-D-E’-F’-G’   master

 From ‘topic’ branch: ‘git rebase master’



git rebase – batch usage

 git rebase does an actual merge
 Merges may have conflict.  You have three choices
 Solve the conflicts:

 git add the resolutions
 git rebase –continue

 Skip this commit
 git rebase –skip

 Abort the rebase
 git rebase --abort



git rebase – batch usage

 You can also change the tree structure of 
your repository.
E.g: you have master, branch A forked from 

master, branch B forked from A
After: git rebase –onto master A B

 Now, branch B is forked from the HEAD of master

a-b-c              master       a-b-c      master

       \-d-e           A        ->         |  \-f’-g’     B

              \-f-g     B                    \-d-e         A
         



git rebase – batch commands

 Finally,  you can delete commits:
A-B-C-D-E-F      master

 git rebase –onto master~5 master~2 
master
A-E’-F’ master



git rebase – interactive commands

 git rebase –i <commit>
<commit> should be the commit BEFORE the 

first one you wish to alter.
Will open your $EDITOR with the following 

buffer:



git rebase – interactive usage

pick d6a7c25 Added README file.
pick dce0696 changed README file.
pick 8e5ba04 Makefile
pick b42cffd rgheguie
pick 2306a37 new line.

# Rebase 68bcfea..2306a37 onto 68bcfea
#
# Commands:
#  p, pick = use commit
#  r, reword = use commit, but edit the commit message
#  e, edit = use commit, but stop for amending
#  s, squash = use commit, but meld into previous commit
#  f, fixup = like "squash", but discard this commit's log message
#  x, exec = run command (the rest of the line) using shell
#  d, drop = remove commit
# These lines can be re-ordered; they are executed from top to bottom
# If you remove a line here THAT COMMIT WILL BE LOST.
# However, if you remove everything, the rebase will be aborted.
# Note that empty commits are commented out



git rebase – interactive usage

 If you do nothing, or remove all the lines, 
nothing happens

 squash – This commit gets deleted, but its 
contents are added to the previous 
commit.  Commit messages are merged.

 fixup – Like squash, but the commit 
message gets lost



git rebase – interactive usage

 reword – change the commit message
 edit – stop there to allow modifying the 

commit

 edit is the more interesting here:



git rebase – interactive usage

 When the rebasing arrives at an “edit” commit, you get 
the command line back.

 At that point, you can do whatever you wish:
 Splitting the commit 

 git reset HEAD^
 git add file1 ; git commit ; git add file2 ; git commit

 Adding files
 Git add file3  ; git commit

 Etc…

 Afterwards: 
 git rebase --continue



git rebase -- reminder

 Simple ground rules:
 No commit should EVER be rebased if it is already public.

 If you have already “pushed” it, or
 If you have “pulled” or “fetched” it, or
 These include commits inherited from branches created from 

“pushed” or “pulled” ones.
 No commit should ever be rebased if:

 You have merged it on a different branch
 This latter will not break other users, but it will break your local merges 

and rerere.

 A suggestion:
 Even if you can use it, do not go overboard.
 Only use it on private branches you have not merged anywhere.



git rebase – why and when

 So, when and how should I do it?
I have found only two practical usages.



git rebase - usage 1

 On a topic branch:
Commit early and often.

 Who cares if it does not build? It’s private
 Keep track of your work

Before merging on a release branch, rebase 
as to make sure that all commits at least build.
 Why? Because otherwise ‘git bisect’ breaks.



git rebase - usage 2

 On a branch you wished ‘pulled’ by 
someone else
Do a git rebase to ensure clean pulling
DO NOT CHANGE COMMITS THAT ARE 

ALREADY PUBLIC!



git submodule

 Suppose your software has dependencies.
 And that those dependencies are also held 

in git repositories.
 You can add informations about them to 

your program.



git submodule

 How to initialize it:
git submodule add git://repo/path/to/project.git

 This creates a directory called ‘project’

cd project; git checkout <version>
 Check out the exact version you wish to use

git commit ; git push



git submodule

 When cloning:
git clone <main repo>

 As usual
git submodule init ; git submodule update

 Updates the submodules to the correct checkout 
version as set by the origin repository.

 This *will* require connectivity to the submodule 
repositories.

 To DELETE a submodule:
git submodule deinit <dir>



git submodule -- notes

 Inside the submodules, by default you do not get a 
branch.
 I.e: commits in there are lost by default
 You should explicitly switch to a branch,
 Commits inside it can be “pushed’ to the repo.

 But this WILL not change what gets checked out
 Need commit (and push) on the main repo

 Whenever you do a  ‘git pull’ you should also do a ‘git 
submodule update’

 ‘git submodule’ commands MUST be given from 
outside the submodule



git submodule

 Cons:
 Needs extra work after clone
 ‘git submodule update’ destroys uncommitted changes
 Local changes cannot be kept in master repository.
 Local changes cannot be seen by remotes unless pushed 

to dependency repo.
 Standard way to undo things does not work

 Pros:
 Present in standard distribution
 Clean separation between main sources and 

dependencies



git filter-branch

 Applies an operation to all commits on a 
branch (or all commits on a repo)



Delete content from history

 You committed a file that should not be there.
 E.g: ‘passwords’

 That file should be completely removed from 
history. How?

> git filter-branch --force --index-filter 'git rm --
cached --ignore-unmatch passwords' --prune-
empty --tag-name-filter cat -- --all 

> git for-each-ref --format=‘delete %(refname)’ 
refs/original | git update-ref –stdin

> git reflog expire –expire=now --all
> git gc --prune=now



Git signing

 Two types of signatures:
Informative 

 On commits

Cryptographical
 On tags



Signing commits

 git commit -s
Adds the “signed-off by:” line to the commit 

messages
Usefulness:

 In case of merge done by other developers, keeps 
track of who originally wrote the code.

 Especially important if patches are exchanged via email.  
Not so important with push/pull



Signing tags

 git tag -s
Signs the tag with your GPG signing key.
This does not just fixes the tag, but to all the 

commits that precede it in the chain.

GPG key and keyring setup left as exercises 
to the reader.



Questions?

          ?
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