
Introduction to VCS

What is a VCS ?

 Version Control System == VCS
A system to archive and retrieve multiple

versions of a set of file (usually computer
sources)

Advantages of VCS

 Is it always possible to retrieve a previous
version.
If a version is broken, you can always get the

previous one
Why not use backups?

 Which is older and which is newer?
 How to find a non-broken version?

Advantages of VCS

 It is possible to share work and collaborate
on it.
Without requiring access to the same

workstation
Allowing (most) of the work to be

unsynchronized

Basic Concepts - Repository

 A Repository is the archive of all versions
of all the files of a project.

 It allows registering new versions and
retrieving new or old ones.

 It allows to reconstruct the state of the
project at any specific point in time

Basic Concepts - Commit

 A commit is the act a registering a new file
/ set of files (or new versions of them) in
the repository

 In modern VCS, the operation is atomic
 Once successfully registered, even if your

version is lost, it can be retrieved from the
repository.

Basic Concepts - Branch

 A VCS can have multiple concurrent
histories for the same files
It maps to multiple concurrent lines of

development.
 Each such history is called a “branch”
 Usually there is a “main” branch called

“master” or “trunk” or “main” depending on
the VCS.

Basic Concepts - Branch

 Each branch may have
different version of each file.

 It is possible to choose on
which branch to work.

 It is possible to take all
changes (commits) from one
branch and copy them to a
different branch (merge).

master

v2.0

bugfix

Basic Concepts – Merge

 A merge is the operation of taking the changes
(commits) on a branch and applying them on a
different branch.

 It is used to reconcile different lines of
development.

 It is possible to have multiple conflicting changes
on the same file (conflict) which must be resolved.
 Examples will be given during the git-specific part.

Basic Concepts – Tag

 A tag is a human-readable name
associated to a specific version of the
project.
Most often used to identify a release

 v1.3.4, project_3.4.5, etc…

But it can be everything

GIT Basics

Why GIT?

 Well, let’s see…
 Effortless branching AND merging

 Both direct and reverse
 Keeps track of multiple merges

 Much less spurious conflicts
 Supports tools for three way merges

 Very useful for conflict resolution!
 Allows partial merging

 Merge only THIS commit from branch A to branch B
 Also known as: backport this feature from release A to release B

 Local branches
 Only on your dev machines

 Branches are cheap
 Create a new branch -> Create a new file containing one line.

Why GIT?

 Fully local commands
 All commands (commit included) work locally and do not require

networking
 Debug support!

 Find the exact commit that introduced a bug!
 “Floating” commits

 I.e: keep track of the changes I made, but do not commit them on any
branch

 Easy reverts
 Not just on local copy, but also on committed changes – even many

releases before
 Full history

 Always have the full history of every file available locally

Why GIT

 Distributed repositories
Each has his own local copy
Synchronization via push/pull/patches

Why GIT

 Exotic features
Submodule -> establish a link from your

module to any other GIT repository
Multiple remotes -> Download changes from

multiple remote repositories
Rebase
Rerere

Basic Git w.r.t basic CVS/SVN

 cvs/svn commit
 cvs/svn add
 cvs/svn tag
 cvs/svn branch
 cvs/svn co – svn revert
 cvs/svn merge
 cvs/svn log
 cvs/svn status
 svn revert

 git commit
 git add
 git tag
 git branch
 git checkout
 git merge
 git log
 git status
 git revert

Concept 1: The Index

 The Index is an intermediate step between
the local copy and the repository
Things are first added to the Index and only

then committed.
Only things added to the Index can be

committed in the repository.

Concept 1: The Index

 Why an Index?
It avoids accidental commits, i.e: committing

more than was intended.

 How to see its contents?
git status

In the following: staged == added to index

Concept 2: Commit and commit
names
 The basic information tracked by git is the single

commit.
 Cf: CVS -> The file
 Cf: SVN -> The project

 All commands that somehow refer to a specific
state of the repository refer to a specific commit.
 E.g: commit, tag, push, pull, merge, reset, etc…

Concept 2: Commits and commit
names
 How to refer to a commit:

 Its absolute name: d6a7c255a85eaa1e8148d35187f9d32bb63d13f7

 Can be abbreviated: d6a7c255a8

 Top commit on a branch: HEAD, <branch name>
 Full symbolic name: refs/heads/<branch name>

 Tag name: <tag name>
 Full symbolic name: refs/tags/<tag name>

 Relative commit: HEAD^ (penultimate), HEAD^^ ,
HEAD~2

 In all cases, omitting the name means HEAD

Concept 2: Commits and commit
names

 Two special commit names have only
limited validity:
ORIG_HEAD: The head of the current branch

BEFORE the last merge. Only available after
a git merge

FETCH_HEAD: The head of the currently
fetched branch. Only available after a git
fetch.

Concept 2: Commits and commit
names
 Every commit may have any number of fathers

and any number of children
 Fathers -> all commits that precede it in some branch
 Children -> all commits that follow it in some branch

 The name of the branch is a synonym for the
commit at the top of that branch

 Every command that accepts a branch name
accepts a commit name in its place

Local and remote commands

 Most commands work on the copy of the
repo you have on your development
machine
This includes commit

 Only a select few require network
connectivity
In this lesson: clone, push, pull, fetch

Initial configuration

 git config --global user.name “Pinco Pallino”
 git config --global

user.email pinco.pallino@example.org
 git config --global push.default simple

 These commands setup information that will be
included in all your commits

 Git will tell about them if you forget to use them

mailto:user.email%3Dpinco.pallino@example.org

clone

 git clone <repo>
Downloads on your machine a FULL copy of

the repository
 All the branches, all the tags, all the history from

the beginning of the project

Most other commands will NOT need network
connectivity.

 For this lesson: git clone git@baltig.infn.it:vciaschini/corsogit.git

Local usage

 Commands and features when working on
the local repository
help, add, rm, mv, status, checkout, branch,

commit, diff, log, tag, merge, reset, revert,
stash

help

 git help <command name>
Prints the man page for the specific git

command
Ex: git help checkout

status

 git status
Shows the status of the working copy
What is modified
What has been staged
How to unmodify
How to unstage

add, rm

 Add a new file or files to the repository
git add <file> … <file>
git commit

 Remove a file:
git rm <file> … <file.
git commit

mv

 Copies a file: two way:
 git mv <old> <new>
 git commit

 Second way
 mv <old> <new>
 git rm <old>
 git add <new>
 git commit

 Note that git can auto-detect moving files.

checkout

 Basic usage:
 git checkout <branch>
 git checkout <tag>
 Note that for this command there is no difference

between branch and tag
 You can also commit over a tag. But the tag will point to the

old version

 Further usages of checkout will be explained later

Commits

 To commit, you must first stage
git add <files>
git commit
Exactly the same as adding a completely new file

 Or you can say “stage *and* commit all
known files.”
git commit –a
Still new files must be staged explicitly

diff

 To show what has changed in the code:
 git diff

 Common Syntaxes
 git diff

 Shows changes relative to the index
 git diff –cached

 Shows changes between the index and the last commit
 git diff <commit>..<commit>

 Shows changes between the two commits
 git diff <commit>

 Shows changes between working dir and commit

Branches

 There are two kinds of branches: local and
remote
Local branches are only on your repository
Remote branches are on remote repositories

 Do not do commits on top of remote
branches. They will eventually be lost. (git
will warn of this)

Branches

 What local branches do exist?
git branch

 What remote branches do exist?
git branch –r

 What branches exist? (local and remote)
git branch –a

Branches

 Create a branch of an existing one
 git branch <new branch> <oldbranch>

 If <oldbranch> is omitted, it is the branch
currently checked out.

 Special case if <oldbranch> is a remote one.
 <new branch> becomes a tracking branch

 Everything working on non-tracking branches works on
tracking ones.

 Additional properties will be explained when dealing with
remote repositories.

Tags

 Adds a symbolic name
git tag <tag name> <commit name>

 A tag cannot be changed. However, it can
be moved (See the advanced session for
instructions)

Merges

 Basic usage:
git merge <branch name>
Merges <branch name> in the current branch
Note that a successful merge implies an

automatic commit
 Add –no-commit if you do not want it.

Merge variants

 git merge <branch 1> … <branch n>
Attempts merging multiple branches at the

same time.
Fails in case of conflicts

 Note that criss-cross merges are
considered “normal” and require no
special handling

Merges: Resolving conflicts

 Done the usual way, or:
 Can use external tools

 Kdiff3 example

 Then do the usual ‘add & commit’

 Note that in general git is a lot smarter than svn
or cvs when resolving conflicts automatically.

reverts:

 Three main cases:
Is the file only on your working copy?

 git checkout -- <file>
Is the file staged?

 git reset HEAD <file>
Is this a commit?

 git revert <commit>
 This one will put on the repository a new commit

that inverts the one above.

reset

 What is reset?
 Reset throws away some changes.
 Main usages:

 git reset –hard
 Reverts your local copy to the latest committed one and

unstages everything
 git reset –hard <commit>

 Reverts your local copy to <commit> and unstages everything.
 This also removes all commits done after <commit> from the

repository

log

 Show the commits on the current checkout
git log

 Annotate them with tag name
git log –decorate

 Personally, I prefer using gitk

stash

 There can be multiple stashes, each with a
name.
git stash list

 You can apply a stash other than the last
one.
git stash apply <stash name>

 Applying a stash does not delete it.
git stash drop <stash name>

Working with remote repositories

 Commands for synching with remote
repositories:
clone, push, fetch, pull

push

 Ok, you have done your work. Now you want
to make it available to the other developers.
Use git push.

 git push
 If there are tracking branches, pushes commits

from those to the remote ones
Non tracking branches are ignored
Pushes only the branch currently checked out.
git push –all pushes all branches

push

 But if I want to push a new branch?
 git push –u origin <new branch>

 This also creates a remote branch on the local repository along with
the tracking relation

 It is also possible to delete a remote branch
 git push –delete <remote branch>

 Tags are not pushed by default
 git push –tags
 Also pushes all tags on tracking branches
 git push –tags <tag>
 Only pushes that tag

fetch

 Fetch allows to receive commits from
remote repositories
git fetch

 Fetches the remote version of the current branch
 Only for tracking branches – does not touch the

corresponding local branch or the working copy.

Use: git merge origin/master to merge

pull

 Does git fetch + git merge the remote
changes in the local branch.
This command WILL change your local

checkout

Additional tips and tricks

 Did I merge branch X anywhere? Where?
 git branch –contains <X>

 Prints all the branches that contain a fully merged branch X

 How do I delete branch X ?
 git branch –d <X>

 Only works if it is fully merged in at least another branch

 git branch –force –d <X>
 Deletes unconditionally

Additional tips and tricks

 Gitk
The repository visualizer

 Very useful for keeping track of merges
 I keep it perpetually open

Creating a new repository

 Inside the directory:
 Remove all files that should not be committed
 git init
 git add .
 git commit

 Now you have everything, but you cannot use it
as an unattended remote
git add remote origin <path>
git push

Some typical workflows

 Many developers, central “blessed”
repository

 Shared Repository

 Developer Developer Developer

One Blessed Repo

Blessed Developer/
public

Blessed/local Developer/
local

originor
igi

na
l

origin

 One integration manager

Which workflow?

 Project’s choice
 Most of this lesson is accurate for both

choices.
Actually, in many cases there is no difference

in day-to-day use.

 Specific issues for the second workflow
will be explained in dedicated slides

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55

