
Introduction to VCS

What is a VCS ?

 Version Control System == VCS
A system to archive and retrieve multiple

versions of a set of file (usually computer
sources)

Advantages of VCS

 Is it always possible to retrieve a previous
version.
If a version is broken, you can always get the

previous one
Why not use backups?

 Which is older and which is newer?
 How to find a non-broken version?

Advantages of VCS

 It is possible to share work and collaborate
on it.
Without requiring access to the same

workstation
Allowing (most) of the work to be

unsynchronized

Basic Concepts - Repository

 A Repository is the archive of all versions
of all the files of a project.

 It allows registering new versions and
retrieving new or old ones.

 It allows to reconstruct the state of the
project at any specific point in time

Basic Concepts - Commit

 A commit is the act a registering a new file
/ set of files (or new versions of them) in
the repository

 In modern VCS, the operation is atomic
 Once successfully registered, even if your

version is lost, it can be retrieved from the
repository.

Basic Concepts - Branch

 A VCS can have multiple concurrent
histories for the same files
It maps to multiple concurrent lines of

development.
 Each such history is called a “branch”
 Usually there is a “main” branch called

“master” or “trunk” or “main” depending on
the VCS.

Basic Concepts - Branch

 Each branch may have
different version of each file.

 It is possible to choose on
which branch to work.

 It is possible to take all
changes (commits) from one
branch and copy them to a
different branch (merge).

master

v2.0

bugfix

Basic Concepts – Merge

 A merge is the operation of taking the changes
(commits) on a branch and applying them on a
different branch.

 It is used to reconcile different lines of
development.

 It is possible to have multiple conflicting changes
on the same file (conflict) which must be resolved.
 Examples will be given during the git-specific part.

Basic Concepts – Tag

 A tag is a human-readable name
associated to a specific version of the
project.
Most often used to identify a release

 v1.3.4, project_3.4.5, etc…

But it can be everything

GIT Basics

Why GIT?

 Well, let’s see…
 Effortless branching AND merging

 Both direct and reverse
 Keeps track of multiple merges

 Much less spurious conflicts
 Supports tools for three way merges

 Very useful for conflict resolution!
 Allows partial merging

 Merge only THIS commit from branch A to branch B
 Also known as: backport this feature from release A to release B

 Local branches
 Only on your dev machines

 Branches are cheap
 Create a new branch -> Create a new file containing one line.

Why GIT?

 Fully local commands
 All commands (commit included) work locally and do not require

networking
 Debug support!

 Find the exact commit that introduced a bug!
 “Floating” commits

 I.e: keep track of the changes I made, but do not commit them on any
branch

 Easy reverts
 Not just on local copy, but also on committed changes – even many

releases before
 Full history

 Always have the full history of every file available locally

Why GIT

 Distributed repositories
Each has his own local copy
Synchronization via push/pull/patches

Why GIT

 Exotic features
Submodule -> establish a link from your

module to any other GIT repository
Multiple remotes -> Download changes from

multiple remote repositories
Rebase
Rerere

Basic Git w.r.t basic CVS/SVN

 cvs/svn commit
 cvs/svn add
 cvs/svn tag
 cvs/svn branch
 cvs/svn co – svn revert
 cvs/svn merge
 cvs/svn log
 cvs/svn status
 svn revert

 git commit
 git add
 git tag
 git branch
 git checkout
 git merge
 git log
 git status
 git revert

Concept 1: The Index

 The Index is an intermediate step between
the local copy and the repository
Things are first added to the Index and only

then committed.
Only things added to the Index can be

committed in the repository.

Concept 1: The Index

 Why an Index?
It avoids accidental commits, i.e: committing

more than was intended.

 How to see its contents?
git status

In the following: staged == added to index

Concept 2: Commit and commit
names
 The basic information tracked by git is the single

commit.
 Cf: CVS -> The file
 Cf: SVN -> The project

 All commands that somehow refer to a specific
state of the repository refer to a specific commit.
 E.g: commit, tag, push, pull, merge, reset, etc…

Concept 2: Commits and commit
names
 How to refer to a commit:

 Its absolute name: d6a7c255a85eaa1e8148d35187f9d32bb63d13f7

 Can be abbreviated: d6a7c255a8

 Top commit on a branch: HEAD, <branch name>
 Full symbolic name: refs/heads/<branch name>

 Tag name: <tag name>
 Full symbolic name: refs/tags/<tag name>

 Relative commit: HEAD^ (penultimate), HEAD^^ ,
HEAD~2

 In all cases, omitting the name means HEAD

Concept 2: Commits and commit
names

 Two special commit names have only
limited validity:
ORIG_HEAD: The head of the current branch

BEFORE the last merge. Only available after
a git merge

FETCH_HEAD: The head of the currently
fetched branch. Only available after a git
fetch.

Concept 2: Commits and commit
names
 Every commit may have any number of fathers

and any number of children
 Fathers -> all commits that precede it in some branch
 Children -> all commits that follow it in some branch

 The name of the branch is a synonym for the
commit at the top of that branch

 Every command that accepts a branch name
accepts a commit name in its place

Local and remote commands

 Most commands work on the copy of the
repo you have on your development
machine
This includes commit

 Only a select few require network
connectivity
In this lesson: clone, push, pull, fetch

Initial configuration

 git config --global user.name “Pinco Pallino”
 git config --global

user.email pinco.pallino@example.org
 git config --global push.default simple

 These commands setup information that will be
included in all your commits

 Git will tell about them if you forget to use them

mailto:user.email%3Dpinco.pallino@example.org

clone

 git clone <repo>
Downloads on your machine a FULL copy of

the repository
 All the branches, all the tags, all the history from

the beginning of the project

Most other commands will NOT need network
connectivity.

 For this lesson: git clone git@baltig.infn.it:vciaschini/corsogit.git

Local usage

 Commands and features when working on
the local repository
help, add, rm, mv, status, checkout, branch,

commit, diff, log, tag, merge, reset, revert,
stash

help

 git help <command name>
Prints the man page for the specific git

command
Ex: git help checkout

status

 git status
Shows the status of the working copy
What is modified
What has been staged
How to unmodify
How to unstage

add, rm

 Add a new file or files to the repository
git add <file> … <file>
git commit

 Remove a file:
git rm <file> … <file.
git commit

mv

 Copies a file: two way:
 git mv <old> <new>
 git commit

 Second way
 mv <old> <new>
 git rm <old>
 git add <new>
 git commit

 Note that git can auto-detect moving files.

checkout

 Basic usage:
 git checkout <branch>
 git checkout <tag>
 Note that for this command there is no difference

between branch and tag
 You can also commit over a tag. But the tag will point to the

old version

 Further usages of checkout will be explained later

Commits

 To commit, you must first stage
git add <files>
git commit
Exactly the same as adding a completely new file

 Or you can say “stage *and* commit all
known files.”
git commit –a
Still new files must be staged explicitly

diff

 To show what has changed in the code:
 git diff

 Common Syntaxes
 git diff

 Shows changes relative to the index
 git diff –cached

 Shows changes between the index and the last commit
 git diff <commit>..<commit>

 Shows changes between the two commits
 git diff <commit>

 Shows changes between working dir and commit

Branches

 There are two kinds of branches: local and
remote
Local branches are only on your repository
Remote branches are on remote repositories

 Do not do commits on top of remote
branches. They will eventually be lost. (git
will warn of this)

Branches

 What local branches do exist?
git branch

 What remote branches do exist?
git branch –r

 What branches exist? (local and remote)
git branch –a

Branches

 Create a branch of an existing one
 git branch <new branch> <oldbranch>

 If <oldbranch> is omitted, it is the branch
currently checked out.

 Special case if <oldbranch> is a remote one.
 <new branch> becomes a tracking branch

 Everything working on non-tracking branches works on
tracking ones.

 Additional properties will be explained when dealing with
remote repositories.

Tags

 Adds a symbolic name
git tag <tag name> <commit name>

 A tag cannot be changed. However, it can
be moved (See the advanced session for
instructions)

Merges

 Basic usage:
git merge <branch name>
Merges <branch name> in the current branch
Note that a successful merge implies an

automatic commit
 Add –no-commit if you do not want it.

Merge variants

 git merge <branch 1> … <branch n>
Attempts merging multiple branches at the

same time.
Fails in case of conflicts

 Note that criss-cross merges are
considered “normal” and require no
special handling

Merges: Resolving conflicts

 Done the usual way, or:
 Can use external tools

 Kdiff3 example

 Then do the usual ‘add & commit’

 Note that in general git is a lot smarter than svn
or cvs when resolving conflicts automatically.

reverts:

 Three main cases:
Is the file only on your working copy?

 git checkout -- <file>
Is the file staged?

 git reset HEAD <file>
Is this a commit?

 git revert <commit>
 This one will put on the repository a new commit

that inverts the one above.

reset

 What is reset?
 Reset throws away some changes.
 Main usages:

 git reset –hard
 Reverts your local copy to the latest committed one and

unstages everything
 git reset –hard <commit>

 Reverts your local copy to <commit> and unstages everything.
 This also removes all commits done after <commit> from the

repository

log

 Show the commits on the current checkout
git log

 Annotate them with tag name
git log –decorate

 Personally, I prefer using gitk

stash

 There can be multiple stashes, each with a
name.
git stash list

 You can apply a stash other than the last
one.
git stash apply <stash name>

 Applying a stash does not delete it.
git stash drop <stash name>

Working with remote repositories

 Commands for synching with remote
repositories:
clone, push, fetch, pull

push

 Ok, you have done your work. Now you want
to make it available to the other developers.
Use git push.

 git push
 If there are tracking branches, pushes commits

from those to the remote ones
Non tracking branches are ignored
Pushes only the branch currently checked out.
git push –all pushes all branches

push

 But if I want to push a new branch?
 git push –u origin <new branch>

 This also creates a remote branch on the local repository along with
the tracking relation

 It is also possible to delete a remote branch
 git push –delete <remote branch>

 Tags are not pushed by default
 git push –tags
 Also pushes all tags on tracking branches
 git push –tags <tag>
 Only pushes that tag

fetch

 Fetch allows to receive commits from
remote repositories
git fetch

 Fetches the remote version of the current branch
 Only for tracking branches – does not touch the

corresponding local branch or the working copy.

Use: git merge origin/master to merge

pull

 Does git fetch + git merge the remote
changes in the local branch.
This command WILL change your local

checkout

Additional tips and tricks

 Did I merge branch X anywhere? Where?
 git branch –contains <X>

 Prints all the branches that contain a fully merged branch X

 How do I delete branch X ?
 git branch –d <X>

 Only works if it is fully merged in at least another branch

 git branch –force –d <X>
 Deletes unconditionally

Additional tips and tricks

 Gitk
The repository visualizer

 Very useful for keeping track of merges
 I keep it perpetually open

Creating a new repository

 Inside the directory:
 Remove all files that should not be committed
 git init
 git add .
 git commit

 Now you have everything, but you cannot use it
as an unattended remote
git add remote origin <path>
git push

Some typical workflows

 Many developers, central “blessed”
repository

 Shared Repository

 Developer Developer Developer

One Blessed Repo

Blessed Developer/
public

Blessed/local Developer/
local

originor
igi

na
l

origin

 One integration manager

Which workflow?

 Project’s choice
 Most of this lesson is accurate for both

choices.
Actually, in many cases there is no difference

in day-to-day use.

 Specific issues for the second workflow
will be explained in dedicated slides

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55

