
Introduction to VCS



What is a VCS ?

 Version Control System == VCS
A system to archive and retrieve multiple 

versions of a set of file (usually computer 
sources)



Advantages of VCS

 Is it always possible to retrieve a previous 
version.
If a version is broken, you can always get the 

previous one
Why not use backups?

 Which is older and which is newer?
 How to find a non-broken version?



Advantages of VCS

 It is possible to share work and collaborate 
on it.
Without requiring access to the same 

workstation
Allowing (most) of the work to be 

unsynchronized



Basic Concepts - Repository

 A Repository is the archive of all versions 
of all the files of a project.

 It allows registering new versions and 
retrieving new or old ones.

 It allows to reconstruct the state of the 
project at any specific point in time



Basic Concepts - Commit

 A commit is the act a registering a new file 
/ set of files (or new versions of them) in 
the repository

 In modern VCS, the operation is atomic
 Once successfully registered, even if your 

version is lost, it can be retrieved from the 
repository.



Basic Concepts - Branch

 A VCS can have multiple concurrent 
histories for the same files
It maps to multiple concurrent lines of 

development.
 Each such history is called a “branch”
 Usually there is a “main” branch called 

“master” or “trunk” or “main” depending on 
the VCS.



Basic Concepts - Branch

 Each branch may have 
different version of each file.

 It is possible to choose on 
which branch to work.

 It is possible to take all 
changes (commits) from one 
branch and copy them to a 
different branch (merge).

master

v2.0

bugfix



Basic Concepts – Merge

 A merge is the operation of taking the changes 
(commits) on a branch and applying them on a 
different branch.

 It is used to reconcile different lines of 
development.

 It is possible to have multiple conflicting changes 
on the same file (conflict) which must be resolved.
 Examples will be given during the git-specific part.



Basic Concepts – Tag

 A tag is a human-readable name 
associated to a specific version of the 
project.
Most often used to identify a release

 v1.3.4, project_3.4.5, etc…

But it can be everything



GIT Basics



Why GIT?

 Well, let’s see…
 Effortless branching AND merging

 Both direct and reverse
 Keeps track of multiple merges

 Much less spurious conflicts
 Supports tools for three way merges

 Very useful for conflict resolution!
 Allows partial merging

 Merge only THIS commit from branch A to branch B
 Also known as: backport this feature from release A to release B

 Local branches
 Only on your dev machines

 Branches are cheap
 Create a new branch -> Create a new file containing one line.



Why GIT?

 Fully local commands
 All commands (commit included) work locally and do not require 

networking
 Debug support!

 Find the exact commit that introduced a bug!
 “Floating” commits

 I.e: keep track of the changes I made, but do not commit them on any 
branch

 Easy reverts
 Not just on local copy, but also on committed changes – even many 

releases before
 Full history

 Always have the full history of every file available locally



Why GIT

 Distributed repositories
Each has his own local copy
Synchronization via push/pull/patches



Why GIT

 Exotic features
Submodule -> establish a link from your 

module to any other GIT repository
Multiple remotes -> Download changes from 

multiple remote repositories
Rebase
Rerere



Basic Git w.r.t basic CVS/SVN

 cvs/svn commit
 cvs/svn add
 cvs/svn tag
 cvs/svn branch
 cvs/svn co – svn revert
 cvs/svn merge
 cvs/svn log
 cvs/svn status
 svn revert

 git commit
 git add
 git tag
 git branch
 git checkout
 git merge
 git log
 git status
 git revert



Concept 1: The Index

 The Index is an intermediate step between 
the local copy and the repository
Things are first added to the Index and only 

then committed.
Only things added to the Index can be 

committed in the repository.



Concept 1: The Index

 Why an Index?
It avoids accidental commits, i.e: committing 

more than was intended.

 How to see its contents?
git status

In the following: staged == added to index



Concept 2: Commit and commit 
names
 The basic information tracked by git is the single 

commit.
 Cf: CVS -> The file
 Cf: SVN -> The project

 All commands that somehow refer to a specific 
state of the repository refer to a specific commit.
 E.g: commit, tag, push, pull, merge, reset, etc…



Concept 2: Commits and commit 
names
 How to refer to a commit:

 Its absolute name: d6a7c255a85eaa1e8148d35187f9d32bb63d13f7

 Can be abbreviated: d6a7c255a8

 Top commit on a branch: HEAD, <branch name>
 Full symbolic name: refs/heads/<branch name>

 Tag name: <tag name>
 Full symbolic name: refs/tags/<tag name>

 Relative commit: HEAD^ (penultimate), HEAD^^ , 
HEAD~2

 In all cases, omitting the name means HEAD



Concept 2: Commits and commit 
names

 Two special commit names have only 
limited validity:
ORIG_HEAD:  The head of the current branch 

BEFORE the last merge.  Only available after 
a git merge

FETCH_HEAD: The head of the currently 
fetched branch.  Only available after a git 
fetch.



Concept 2: Commits and commit 
names
 Every commit may have any number of fathers 

and any number of children
 Fathers -> all commits that precede it in some branch
 Children -> all commits that follow it in some branch

 The name of the branch is a synonym for the 
commit at the top of that branch

 Every command that accepts a branch name 
accepts a commit name in its place



Local and remote commands

 Most commands work on the copy of the 
repo you have on your development 
machine
This includes commit

 Only a select few require network 
connectivity
In this lesson: clone, push, pull, fetch



Initial configuration

 git config --global user.name “Pinco Pallino”
 git config --global 

user.email pinco.pallino@example.org
 git config --global push.default simple

 These commands setup information that will be 
included in all your commits

 Git will tell about them if you forget to use them

mailto:user.email%3Dpinco.pallino@example.org


clone

 git clone <repo>
Downloads on your machine a FULL copy of 

the repository
 All the branches, all the tags, all the history from 

the beginning of the project

Most other commands will NOT need network 
connectivity.

 For this lesson: git clone git@baltig.infn.it:vciaschini/corsogit.git



Local usage

 Commands and features when working on 
the local repository
help, add, rm, mv, status, checkout, branch, 

commit, diff, log, tag, merge, reset, revert, 
stash



help

 git help <command name>
Prints the man page for the specific git 

command
Ex: git help checkout



status

 git status
Shows the status of the working copy
What is modified
What has been staged
How to unmodify
How to unstage



add, rm

 Add a new file or files to the repository
git add <file> … <file>
git commit

 Remove a file:
git rm <file> … <file.
git commit



mv

 Copies a file: two way:
 git mv <old> <new>
 git commit

 Second way
 mv <old> <new>
 git rm <old>
 git add <new>
 git commit

 Note that git can auto-detect moving files.



checkout

 Basic usage:
 git checkout <branch>
 git checkout <tag>
 Note that for this command there is no difference 

between branch and tag
 You can also commit over a tag.  But the tag will point to the 

old version

 Further usages of checkout will be explained later



Commits

 To commit, you must first stage
git add <files>
git commit
Exactly the same as adding a completely new file

 Or you can say “stage *and* commit all 
known files.”
git commit –a
Still new files must be staged explicitly



diff

 To show what has changed in the code:
 git diff

 Common Syntaxes
 git diff

 Shows changes relative to the index
 git diff –cached

 Shows changes between the index and the last commit
 git diff <commit>..<commit>

 Shows changes between the two commits
 git diff <commit>

 Shows changes between working dir and commit



Branches

 There are two kinds of branches: local and 
remote
Local branches are only on your repository
Remote branches are on remote repositories

 Do not do commits on top of remote 
branches. They will eventually be lost. (git 
will warn of this)



Branches

 What local branches do exist?
git branch

 What remote branches do exist?
git branch –r

 What branches exist? (local and remote)
git branch –a



Branches

 Create a branch of an existing one
 git branch <new branch> <oldbranch>

 If <oldbranch> is omitted, it is the branch 
currently checked out.

 Special case if <oldbranch> is a remote one.
 <new branch> becomes a tracking branch

 Everything working on non-tracking branches works on 
tracking ones.

 Additional properties will be explained when dealing with 
remote repositories.



Tags

 Adds a symbolic name
git tag <tag name> <commit name>

 A tag cannot be changed.  However, it can 
be moved (See the advanced session for 
instructions)



Merges

 Basic usage:
git merge <branch name>
Merges <branch name> in the current branch
Note that a successful merge implies an 

automatic commit
 Add –no-commit if you do not want it.



Merge variants

 git merge <branch 1> … <branch n>
Attempts merging multiple branches at the 

same time.
Fails in case of conflicts

 Note that  criss-cross merges are 
considered “normal” and require no 
special handling



Merges: Resolving conflicts

 Done the usual way, or:
 Can use external tools

 Kdiff3 example

 Then do the usual ‘add & commit’

 Note that in general git is a lot smarter than svn 
or cvs when resolving conflicts automatically.



reverts:

 Three main cases:
Is the file only on your working copy?

 git checkout -- <file>
Is the file staged?

 git reset HEAD <file>
Is this a commit?

 git revert <commit>
 This one will put on the repository a new commit 

that inverts the one above.



reset

 What is reset?
 Reset throws away some changes.
 Main usages:

 git reset –hard
 Reverts your local copy to the latest committed one and 

unstages everything
 git reset –hard <commit>

 Reverts your local copy to <commit> and unstages everything.
 This also removes all commits done after <commit> from the 

repository



log

 Show the commits on the current checkout
git log

 Annotate them with tag name
git log –decorate

 Personally, I prefer using gitk



stash

 There can be multiple stashes, each with a 
name.
git stash list

 You can apply a stash other than the last 
one.
git stash apply <stash name>

 Applying a stash does not delete it.
git stash drop <stash name>



Working with remote repositories

 Commands for synching with remote 
repositories:
clone, push, fetch, pull



push

 Ok, you have done your work.  Now you want 
to make it available to the other developers.  
Use git push.

 git push
 If there are tracking branches, pushes commits 

from those to the remote ones
Non tracking branches are ignored
Pushes only the branch currently checked out.
git push –all pushes all branches



push

 But if I want to push a new branch?
 git push –u origin <new branch>

 This also creates a remote branch on the local repository along with 
the tracking relation

 It is also possible to delete a remote branch
 git push –delete <remote branch>

 Tags are not pushed by default
 git push –tags
 Also pushes all tags on tracking branches
 git push –tags <tag>
 Only pushes that tag



fetch

 Fetch allows to receive commits from 
remote repositories
git fetch

 Fetches the remote version of the current branch
 Only for tracking branches – does not touch the 

corresponding local branch or the working copy.

Use: git merge origin/master to merge



pull

 Does git fetch + git merge the remote 
changes in the local branch.
This command WILL change your local 

checkout



Additional tips and tricks

 Did I merge branch X anywhere? Where?
 git branch –contains <X>

 Prints all the branches that contain a fully merged branch X

 How do I delete branch X ?
 git branch –d <X>

 Only works if it is fully merged in at least another branch

 git branch –force –d <X>
 Deletes unconditionally



Additional tips and tricks

 Gitk
The repository visualizer

 Very useful for keeping track of merges
 I keep it perpetually open



Creating a new repository

 Inside the directory:
 Remove all files that should not be committed
 git init
 git add .
 git commit

 Now you have everything, but you cannot use it 
as an unattended remote
git add remote origin <path>
git push



Some typical workflows

 Many developers, central “blessed” 
repository

   Shared Repository

         Developer          Developer          Developer



One Blessed Repo

Blessed Developer/
public

Blessed/local Developer/
local

originor
igi

na
l

origin

 One integration manager



Which workflow?

 Project’s choice
 Most of this lesson is accurate for both 

choices.
Actually, in many cases there is no difference 

in day-to-day use.

 Specific issues for the second workflow 
will be explained in dedicated slides
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