
(Oltre lo) Sviluppo Software

Introduzione
Davide Salomoni – davide@infn.it

mailto:davide@infn.it

About this introduction
• This course will not discuss tools that one uses to develop applications

(e.g., compilers, languages, algorithms and their optimization, etc.)
• It will rather focus on tools that support the development, testing and

deployment of applications in a modern environment.
• Note that it will also not discuss details about distributed resources

and infrastructures, but it will assume that we live “in the Cloud”.
• Here, Cloud: a “software-defined world” (software-defined networking,

software-defined storage, software-defined computing).
• This course, that will mostly be hands-on oriented, will then tap on what it

means to write “cloud-native applications”.

• This introduction covers the general points that you will explore in
further lectures.

OSS-2021 Davide Salomoni 2

An essential point: Cloud Automation

• Given the complexity of modern applications and environments,
automating development processes is essential.
• Cloud Automation is therefore a set of processes and technologies

that allow to automatize several operations related to Cloud
computing.
• Doing things by hand is rarely a good idea when complexity increases,

and we will see in this course some relatively complex technologies.
• This is closely linked to a key issue, that is, reproducibility.

OSS-2021 Davide Salomoni 3

Cloud automation as key to reproducibility

• For examples of Cloud automation connected to
reproducibility, see e.g. “Cloud Computing May be
Key to Data Reproducibility”.
• See also Nature, Vol. 533, 26 May 2016, pp. 452-454,

“1,500 scientists lift the lid on reproducibility”.

OSS-2021 Davide Salomoni 4

https://www.laboratoryequipment.com/article/2018/02/cloud-computing-may-be-key-data-reproducibility
https://www.nature.com/news/polopoly_fs/1.19970!/menu/main/topColumns/topLeftColumn/pdf/533452a.pdf

Microservices (1)
• When we start thinking about applications designed

for the Cloud (where we have potentially many
identical resources at our disposal), a common
analogy that is made is one of picturing traditional
apps as pets (each one is unique and irreplaceable),
compared to Cloud-native apps as cows (many
identical instances of a functionally equivalent
“item”).
• Microservices are a way to build applications as a

collection of (potentially many) small autonomous
services. This is the opposite of creating a big
software or service, or anyway a few fat ones, called
sometimes monoliths.

OSS-2021 Davide Salomoni 5

Microservices (2)

• At high level, microservices reflect at the architectural level a culture
of autonomy and responsibility: a single microservice can be
developed and managed independently by different teams, using
maybe different development environments (for example, different
languages).
• In microservices architectures, multiple, independent processes

communicate with each other through the network.
• As we will see later, these processes are often encapsulated in Docker

containers.

OSS-2021 Davide Salomoni 6

OSS-2021 Davide Salomoni 7

Application architectures

Monolithic Applications
• Do everything
• Single application
• You distribute the entire

application
• Single database
• Keep state in each application

instance
• Single stack with a single

technology

Microservices
• Each has a dedicated task
• Minimal services for each

function
• Can be distributed individually
• Each has its own database
• State is external
• Each microservice can adopt its

own preferred technology

OSS-2021 Davide Salomoni 8

Monoliths vs. microservices

Adapted from AWS

An example of a microservice
architecture

• This is the structure of a
typical e-commerce
application (from
https://microservices.io/pa
tterns/microservices.html)
• The microservice pattern,

however, applies in a
similar way to any type of
applications.

OSS-2021 Davide Salomoni 9

https://microservices.io/patterns/microservices.html

All good with microservices?
• Of course not. There are cases when monolithic applications might make

more sense.
• With microservices, you must typically consider:

• Deployment of each microservice independently.
• Microservice orchestration.
• Unification of the format of software integration and deployment pipelines.
• Compared to monolithic systems, there are more services to monitor.
• Since they form a distributed system, the model is more complex than with monoliths.

• However, with microservices:
• Reliability is much easier, because if for example you happen to break one microservice,

you will affect only one part, not the entire app.
• Scalability is much better. With monoliths, horizontal scaling might be impossible and,

when possible, it is connected to scaling the entire app, which is typically inefficient.

OSS-2021 Davide Salomoni 10

Automation of the release pipelines

• Strictly related to the microservice architecture is the concept of
DevOps.
• DevOps is a pattern for developing applications where Development

and Operation practices tightly integrate.
• In other words, rather than (1) writing a full “production level” application, (2)

releasing it and then (3) waiting for operational feedback, the DevOps
application release process is much more agile, and it follows tight release and
feedback schedules.
• This is a concept that extends beyond the people who practically do

development and operations. It includes end users as soon as this is possible.

OSS-2021 Davide Salomoni 11

Release early, release often
• The DevOps mantra is

“release early, release often”:
this implies utilizing a set of
tools and processes to
facilitate automation,
monitoring and continuous
integration of all the involved
components (microservices,
for example) to quickly
complete the development
and delivery cycles.
• This is an example of risk

reduction in software
development.

OSS-2021 Davide Salomoni 12

Source: https://medium.com/@warren2lynch/scrum-philosophy-release-early-release-often-a5b864fd62a8

https://medium.com/@warren2lynch/scrum-philosophy-release-early-release-often-a5b864fd62a8

DevOps

OSS-2021 Davide Salomoni 13

Source: https://nickjanetakis.com/blog/what-is-devops

https://nickjanetakis.com/blog/what-is-devops

DevOps benefits

OSS-2021 Davide Salomoni 14

• Speed – microservices & continuous
delivery
• Innovate faster
• Better adapt to changing requirements

• Rapid Delivery – continuous
integration and delivery
• Higher release frequency

• Reliability – continuous integration
and delivery, monitoring & logging
• Ensure the quality of application

updates

• Scale – automation, treat infrastructures as
code
• Operate and manage infrastructures and

development processes at scale
• Improved Collaboration

• Less friction, more effective teams
• Security - automated compliance policies,

fine-grained controls, configuration
management
• Move quickly but preserve control and

compliance

The DevOps principles

• DevOps is a comprehensive way of thinking covering all the stages of
an application lifetime.
• It is particularly applicable to distributed, microservices-based

applications, which we typically find in Cloud environments.
• It is therefore important to know its main principles and try to apply

them whenever we write applications, be they small or big. Let’s
now see them in some detail.

OSS-2021 Davide Salomoni 15

Continuous Integration
• Continuous Integration is a software development practice where

developers regularly merge their code changes into a central
repository, after which automated builds and tests are run
• The result: deployment packages that can be used by Continuous

Deployment (discussed later) for deployment to multiple environments.
• A widely used tool for this: Jenkins (https://jenkins.io).

OSS-2021 Davide Salomoni 16

Source: https://jaxenter.com/how-
to-move-from-ci-to-cd-with-
jenkins-workflow-128135.html

https://jenkins.io/
https://jaxenter.com/how-to-move-from-ci-to-cd-with-jenkins-workflow-128135.html

Continuous Integration

OSS-2021 Davide Salomoni 17

Which Continuous Integration if I use
Python?

• Python does not need a “compilation step”. However, you can and should
still use some Continuous Integration best practices in your projects, even
if you only use Python. For example, you most likely want to perform some
Quality Assurance tests to be run automatically, such as:
• sloccount to count the lines of code (that is, non-blank, non-comment) in a program,

not only in Python. This seems simplistic, but it can give you an estimate about the
complexity of a project. See https://dwheeler.com/sloccount/.

• Pylint is “a Python static code analysis tool which looks for programming errors,
helps enforcing a coding standard, sniffs for code smells and offers simple refactoring
suggestions”. It is sometimes annoying, but I would say it is a must use. See
https://pypi.org/project/pylint/.

• Pytest (https://docs.pytest.org/en/latest/index.html) and Nose2
(https://github.com/nose-devs/nose2) make it easy to write tests for code coverage.
Never underestimate the importance of writing tests in your programs!

OSS-2021 Davide Salomoni 18

https://dwheeler.com/sloccount/
https://pypi.org/project/pylint/
https://docs.pytest.org/en/latest/index.html
https://github.com/nose-devs/nose2

Continuous Delivery
• Continuous Delivery is a software development practice where code changes are
automatically:
• Built,
• Tested,
• Prepared for a release to production.

• It expands upon continuous integration by deploying all code changes to a
testing environment and/or a production environment after the build stage.

• When continuous delivery is implemented properly, developers will always
have a deployment-ready build artifact that has passed through a standardized
test process.

OSS-2021 Davide Salomoni 19

Source: https://jaxenter.com/how-
to-move-from-ci-to-cd-with-
jenkins-workflow-128135.html

https://jaxenter.com/how-to-move-from-ci-to-cd-with-jenkins-workflow-128135.html

Continuous Delivery

OSS-2021 Davide Salomoni 20

Continuous Deployment

• Continuous Deployment refers to the capability to deploy
applications and services to pre-production and production
environments through automation.
• This means:
• Provisioning and configuring an environment.
• Deploying and configuring an application on top of it.

• This is normally done after conducting multiple validations (functional
performance tests) on a pre-production environment.

• Provision and configure the production environment.
• An application is deployed to production environments through automation.

OSS-2021 Davide Salomoni 21

Continuous Deployment

OSS-2021 Davide Salomoni 22

The “Continuous” mantra

OSS-2021 Davide Salomoni 23

Remember the DevOps motto:
“Release early, release often”

Continuous Learning

• The benefits of DevOps will not last for long if a continuous
improvement and feedback principle is not in place.
• This means to have real-time feedback about the application’s behavior.

• Applications should therefore be built with:
• Monitoring;
• Auditing;
• Telemetry in mind.

OSS-2021 Davide Salomoni 24

Continuous Monitoring
• Monitoring starts in the development phase.
• The same tools that monitor the production environment can be employed in

development to spot performance problems before they hit production.

• Two kinds of monitoring are required for DevOps:
• Server monitoring.
• Application performance monitoring.

• This means measuring DevOps effectiveness:
• Monitoring, audit and collection of metrics should be developed and

deployed.
• There should be a regular baselining of data for effective comparison.

Metrics should be captured over a period and then compared with the
baseline.

OSS-2021 Davide Salomoni 25

Examples of monitoring metrics

OSS-2021 Davide Salomoni 26

The DevOps tool chain

OSS-2021 Davide Salomoni 27

Docker containers, microservices and
orchestration

• Docker containers help to easily create and share applications that are – as
the name says – self-contained.
• On the other hand, we just saw that microservice architectures are based on

the composition of many independent (but communicating) services.
• Combining these two points, containers can greatly help with the creation of

a microservice architecture. For example, through docker-compose you can
easily create multiple containers linked together in Application Stacks.
• However, docker-compose is limited to the composition of containers within

a single host. On the other hand, microservices are often deployed across
multiple hosts.
• We therefore need to know how to effectively orchestrate many containers

across multiple, distributed hosts. This is called container orchestration.

OSS-2021 Davide Salomoni 28

Kubernetes

• Probably the most famous container orchestration toolset in use
today is Kubernetes, or K8s (https://kubernetes.io/).
• Kubernetes [*] was initially developed at Google to scale container

applications over a Google-scale infrastructure.
• There will be several hands-on exercises on Kubernetes. Let’s quickly

cover its main concepts here in one slide.

OSS-2021 Davide Salomoni 29

[*] Kubernetes: κυβερνήτης, Greek for “helmsman” or “pilot” or “governor” (https://en.wikipedia.org/wiki/Kubernetes)

https://kubernetes.io/
https://en.wiktionary.org/wiki/%CE%BA%CF%85%CE%B2%CE%B5%CF%81%CE%BD%CE%AE%CF%84%CE%B7%CF%82
https://en.wikipedia.org/wiki/Kubernetes

Kubernetes clusters
• A Kubernetes cluster consists of two types of

resources:
• One or more Masters coordinate the cluster
• Nodes are the workers that run containerized

applications
• The Master is responsible for managing the

cluster.
• It coordinates all activities in the cluster, such as

scheduling applications, maintaining applications'
desired state, scaling applications and rolling out
new updates.

• A Node is a VM or a physical computer that
runs containerized applications by special
processes called pods.

OSS-2021 Davide Salomoni 30

Infrastructure as Code
• With the idea of Infrastructure as Code (IaC), instead of manually creating

or provisioning the infrastructure we need for our applications (e.g., install
and configure virtual machines, disk volumes, clusters of servers, etc.), we
define what we want through machine-readable definition files.
• IaC assumes that “Complexity kills Productivity”: it therefore aims to simplify how

you can realize complex infrastructures and set-ups, without having you to learn
infrastructural details.

OSS-2021 Davide Salomoni 31

• With IaC, all the specifications for the physical
or virtual infrastructure that we want to
generate are explicitly described through
configuration files, often stored in high-level
templates.
• IaC focuses on “what we need”, rather than on “how

to create an infrastructure”.
https://blog.stackpath.com/infrastructure-as-code-explainer/

Not c
ove

red in
 detail

in th
is c

ourse

https://blog.stackpath.com/infrastructure-as-code-explainer/

Template-based orchestration

• IaC makes use of templating mechanisms to describe and provision
(“orchestrate”) resources needed by an application in a fully
distributed Cloud infrastructure.
• This extends what we said about Kubernetes to cover any

requirements that your applications might have, automatizing your
app deployments in a Cloud.
• The templating concept also links to the idea of reusing and

extending know-how, rather than reinventing the wheel every time.
• IaC is therefore also part of a modern software development process,

and it connects tightly with the DevOps concepts mentioned earlier.

OSS-2021 Davide Salomoni 32

Not c
ove

red in
 detail

in th
is c

ourse

An example: INFN Cloud
• Since 15/3/2021 it is possible for INFN

personnel and associates to require
access to resources available on the
INFN Cloud infrastructure. For more
info: https://www.cloud.infn.it

OSS-2021 Davide Salomoni 33

Not c
ove

red in
 detail

in th
is c

ourse

https://www.cloud.infn.it/

OSS-2021 Davide Salomoni 34

The INFN Cloud dashboard

Authentication can be enabled for:
• Local username/password
• Google accounts
• eduGAIN (e.g. Universities, research centers,

etc.)
• Other OIDC providers

Transparent, multi-site federation for users of
Cloud resources belonging to INFN and/or to
other Cloud providers (private or public)

Access to the
Cloud services
through a
common
dashboard, with
different views
depending on the
users / user
groups.

Composed, high-level services easily
customizable and configurable directly by users

IaC Templates

The whole application landscape so far
• Let’s recap the evolutions:

• We started from applications running on single data
centers running on physical hardware…

• … then we introduced virtualization to optimize resource
usage…

• … then we moved to the Cloud to instantiate basic
infrastructural resources (for instance VMs)…

• … then we introduced Docker containers to improve
efficiency and portability…

• … then we exploited Docker, breaking down monolithic
applications into stateless applications based on
microservices through Container orchestration…

• … then we said we can use DevOps to manage the entire
application lifecycle.

• With IaC (not covered in detail in this course) we
are now abstracting from the infrastructural layers
even more, expressing application requirements in
high-level templates, making use of pluggable PaaS
components.

OSS-2021 Davide Salomoni 35

Serverless technologies
• With serverless technologies, we perform another step toward automating and

facilitating writing and using applications and Cloud resources.
• Remember that what eventually matters are the applications, not the infrastructure.

• With serverless, a Cloud provider is responsible for executing a piece of code,
written by you, by dynamically finding and allocating the resources needed by
the code.

OSS-2021 Davide Salomoni 36

• In serverless, your code is typically structured around
a set of stateless functions. Thus, serverless
computing is also called Functions as a Service, or
FaaS. We won’t cover FaaS in detail in this course, but
it is an important concept.
• The running of the serverless functions can be triggered by

some conditions, such as for example database events, file
uploads, scheduled events, various alerts, etc.

• Structuring an app around stateless functions is consistent
with the idea of microservices we have already seen. This
time, however, we focus just on the app code, and deal as
little as possible with resource provisioning and
deployment.

https://www.iron.io/

Not c
ove

red in
 detail

in th
is c

ourse

https://www.iron.io/

Conclusions
• We have mentioned tools and concepts that deal with automatizing

the writing, testing and deploying of modern applications in a Cloud-
centric world. This has positive consequences also for the all-
important topic of reproducibility.
• You will now spend the rest of the course exploring in some more

details most of what it was said, also through several hands-on
sessions.
• So, learn and have fun!
• For any questions, send me an email at davide@infn.it.

Thanks!
OSS-2021 Davide Salomoni 37

mailto:davide@infn.it

