Nicolò Cibrario

## Machine Learning for the measurement of the Cosmic-Ray Electron Spectrum with Fermi Large Area Telescope





Istituto Nazionale di Fisica Nucleare

1

#### Fermi Gamma-Ray Space Telescope

Launch Date: 11 June 2008



#### Large Area Telescope



#### Latest CRE Spectra



#### Aim of the work

ML Technique for 2017 analysis: Boosted Decision Trees (+MC/data correction)

ML Techniques for this work: Neural Networks & Unsupervised Learning

Possible advantages are:

#### Neural Networks:

They could find different patterns and correlations in data compared to the BDTs: better separation between electrons and protons?

**Unsupervised Learning:** 

It would allow to avoid uncertainties linked to the MC simulations

1st Part

## **Neural Networks**

#### Neural Networks: Overview



Layers: Made up of neurons Activation function: Activation of the single neuron Loss: Error between the output and the expected value Optimizer: Tool used to modify the weights

#### Variables Selection

Preliminary cuts  $\rightarrow$  Only protons and electrons in the dataset

A subset of variables is needed: highlight the differences between electrons and protons events.



First attempt: variables used in 2017 analysis

#### MC simulations datasets: training and testing the network

MC simulations were divided into a Trainset (50%), an Evalset (25%), and a Testset (25%).



**Testset** Forward Pass ------- Used to test the performances of the model

#### Features tuning

MC data were preprocessed before feeding the network.



How to avoid over-fitting?

Two techniques are used in the algorithms:

**Dropout & Early Stopping** 

#### Output of the network

The output of the network is a value of p, ranging from -1 (indicating protons-like events) to 1 (indicating electrons-like events).

Log(1-p) is calculated, to highlight the region where electrons and protons overlap.



#### **Evaluation of the network**

To compare different models, ROC (Receiver Operating Characteristic) curve, i.e. *True Positive Rate (TPR)* as a function of *False Positive Rate (FPR)* is shown, and AUC (Area Under the Curve) is calculated.





## Output for two energy intervals





## Output for two energy intervals





# NN3: Adding new input variables



## Output for two energy intervals ROC curve



#### NN2 and NN3 comparison



NN3: Neural network to be used with experimental data

#### Datasets for CRE spectrum

Experimental Data: 5Y of data (Aug 2015 - Aug 2020) -> 4\*10<sup>8</sup> events

> Monte Carlo simulations: MC electrons ->  $6*10^5$  events MC protons ->  $9*10^6$  events



### **Template Fit**

Estimate the rate of electrons and protons for each energy bin, combining the informations of both MC simulations and experimental data.



#### **Selection Cut**

Selecting a maximum value of P\* for computing the template fit, performances can be improved.

E = 426-489 GeV



### **Efficiency and Contamination**

For equal values of efficiency, a comparison between the 2017 analysis and this work is possible looking at the values of contamination



Main possible reason Absence of Data/MC agreement corrections

#### **Final Spectrum**

Only Statistical Uncertainties are reported, systematic errors still to be estimated



#### Changing variables



## **Preliminary Spectrum**



2nd Part

## **Unsupervised Learning**

#### **Dimensionality Reduction**



#### Input space reduced to 3 variables with both methods

After the dimensionality reduction, a clustering algorithm is applied, and evaluation is performed through the **Adjust Rand Index (ARI)** value

### Results for e/p=1



#### **Autoencoders**



29

#### **Actual Electrons to Protons Rate**



### Results for e/p=1/10

#### **Principal Component Analysis**



#### **Autoencoders**





#### Autoencoder with experimental data



### Conclusions

**Neural Networks** 

First application of NN to Fermi cosmic-rays data. Preliminary results are promising, but some adjustments are still required.

Unsupervised Learning

Two steps needed:

- Reducing the number of protons in the experimental datasets with specific cuts.
- Developing a new algorithm which can separate the clusters with different sizes.

**Backup Slides** 

#### **Dataset Composition**

Cuts applied to select only electrons and protons

## electrons tverage ToT for the hits on the best track alphas+heavies -0.5 Energy in the hit tile (MeV) Data Average ToT for the hits 3 -1.5 0.5 2 2.5 Energy in the hit tile (MeV)

McElectrons + McAlphas + McHeavies

#### **Trigger Filter**

Selection of events that trigger the LAT and pass the on-board gamma.

#### **Quality Cut**

Selection of events with at least a reconstructed track and a minimal PSF quality.

#### Alpha Cut

Cut removing  $\alpha$  and heavies ->  $\alpha$ /p =0.003 .

#### Spectrum E3 NN3



#### **Preliminary comparison**

