Evoluzione dello Storage

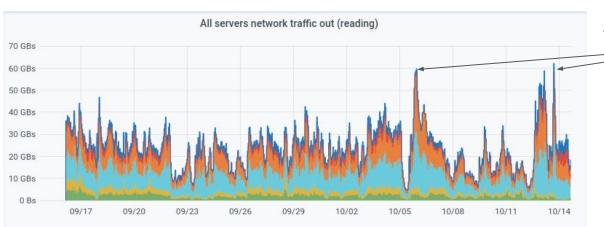
Vladimir Sapunenko

Workshop "CNAF Reloaded" 10 Novembre 2020

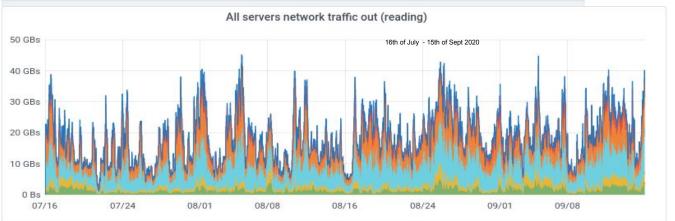
Come dobbiamo gestire l'Evoluzione?

Secondo me bisogna seguire questo percorso

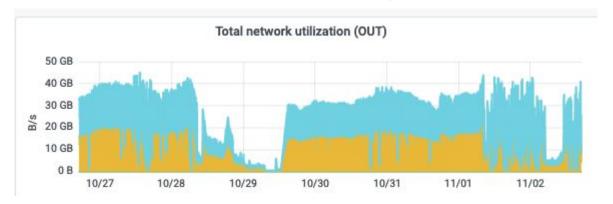
- 1. Raccolta e definizione dei requisiti da parte degli utenti
- 2. Definizione dei servizi necessarie per realizzare richieste di punto 1.
- 3. Analisi della soluzione attuale
- 4. Selezione delle Soluzioni tecnologici più adatti
- 5. Valutazioni dei costi e degli risorse umane necessarie
- 6. Implementare le modifiche alla soluzione attuale



Disk storage in produzione (41PB)


Sistema	modello	Capacita', TB	esperimenti	scadenza
ddn-10, ddn-11	DDN SFA12k	10752	Atlas, Alice, AMS	03/2021
md-1,md-2,md-3,md-4	Dell MD3860f	2308	DS, Virgo, Archive	11/2021
md-7	Dell MD3820f	20	Metadati, home, SW	04/2021
md-5, md-6	Dell MD3820f	8	metadati	06/2021
os6k8	Huawei OS6800v3	3400	ALICE, GR2	2022
os18k1, os18k2	Huawei OS18000v5	7800	LHCb, ALICE	2023
os18k3, os18k5, os18k5	Huawei OS18000v5	11700	ATLAS, CMS	2024
ddn-12, ddn-13	DDN SFA 7990	5060	GR2,GR3	2025
ddn-14, ddn-15	DDN SFA 2000NV	24	metadati	2025

Network: l'uso in aumento


Saturazione (quasi) link 400Gb CINECA-CNAF

Requirements per lo storage sul disco

- Accesso via
 - POSIX
 - XrootD
 - SRM (almeno per lo buffer d'avanti all tape)
 - WebDAV/HTTP
- I/O rate 5 MB/s per ogni TB (non e' un numero a caso)
 - Ad. es. CMS ha 8193TB di spazio disco e in grado tirare fino a 40GB/s

Considerazioni tecnologici

- Con la crescita prevista delle pledge per disco possiamo starci dietro con aumento dimensione del singolo disco
 - o numero dei dischi può rimanere invariato (7-8k)
- Aumento delle prestazioni progresso tecnologico (PCI3->PCI4, EDR IB,
 200GbE, dual-actuator HDD) ma sempre indietro dalla crescita di capacità
 - Rate di I/O relativo alla capacità va in diminuzione (MB/s/TB)

Modello attuale (GPFS + Enterprise storage)

- Numero di server in grosso modo invariato
- Crescita di capacità definita dall'aumento capacità del disco
- Efficienza dell'uso dello spazio ~99% dello spazio utilizzabile (80% del RAW)
- Resilienza a fallimento dei server (fino a N-N/2)
- Ricostruzione di un disco gestito da FW sulla base di RAID distribuito (o EC), trasparente per i server.

Numero di server: 10 serv x exp LHC +10 serv per non_LHC = 50

- NSD server e Data export server possono essere condivisi
- Da aggiungere costi manutenzione delle licenze SW

Studio delle Soluzioni alternativi

Abbiamo valutato

- dCache
- EOS
- Lustre
- Object Storage
- CephFS

Negli prossimi slides riporto alcuni problematiche di varie soluzioni che hanno portato alla scelta di CephFS come soluzione più adatta alle nostri esigenze

dCache

- Prodotto di DESY
- Difficilmente utilizzabile da esperimenti non LHC
 - Specialmente per chi vuole accesso POSIX
- Singoli storage nodes con la protezione locale via RAID controller
- HA (protezione contro spegnimento di un server) ed eliminazione dei HostSpot fatta via replicazione dati su altri server - overhead + del doppio sullo spazio RAW

EOS

- Open Source del CERN
- Poco diffuso anche nel modo scientifico
- Difficilmente utilizzabile da esperimenti non LHC
- Manpower dedicato per la gestione (almeno 1FTE diviso tra 2-3 persone)
 - ~60KE/anno
- Bassa densita' Best Practice: 25 HDD per storage node
- limite dell'occupazione ~80-90% (Best Practice dice 60-80%)
- Ricostruzione dati usa risorse dei server
- Works better with many "small" storage servers

Lustre

- OpenSource, proprieta' di DDN (free download per la versione -1), supporto a pagamento
- Prestazioni alti (tunabile per un tipo di data flow)
 - Problematico supporto per data flow misto
- Works better with a few "large" storage servers or Enterprise storage systems

Object Storage

- No POSIX (ovviamente)
- Basso interesse da parte degli utenti

CephFS

- OpenSource, proprieta' di RedHat, supporto a pagamento
- Mancano alcuni funzionalita' che usiamo in PROD con GPFS
- Manca integrazione con StoRM
- Per XrootD c'è stato un tentativo di interfacciamento fatto al CERN e RAL
 - Da verificare lo stato attuale
- Prestazioni generalmente più basse
- Works better with many "small" storage servers

Piano di lavoro

CEPH e CephFS

- Studio di varie configurazioni con lo Testbed esistente
 - 2 mesi, 2 persone, 0.5 FTE
- Studio di fattibilità di interfacciamento CephFS con StoRM
 - 2 mesi, 2 persone, 0.2 FTE con supporto da parte SDDS
- Studio Interfacciamento con XrootD
 - 2 mesi, 1 persona, 0.2 FTE
- Studio di possibilità di integrazione CEPH (al livello di Block device) con EOS services
 - 2 mesi, 2 persone, 0.2 FTE (Progetto collaborazione con CERN)
- Installazione dello cluster con lo HW mirato alla architettura CEPH (gara in corso)
 - 1 settimana partendo dalla consegna HW
- Studio di fattibilità di utilizzo CephFS in un cluster di O(1000) nodi e I/O di alta intensità
 - 2 mesi, 2 persone, 0.2 FTE (con supporto da parte farming)
- Confronto con GPFS delle prestazioni e stabilità

Tape Libraries

- 7.3 PB liberi (complessivamente sulle 2 librerie). Usati 80.8 PB
 - Scritture ultimi 6 mesi: 1.1 PB al mese

Library	Tape drives	Max data rate/drive, MB/s	Max slots	Max tape capacity,	Used slots	Used capacity, PB
SL8500 (Oracle)	17*T10KD	250	10000	7.4	10000	80
TS4500 (IBM)	19*TS1160	400	6198	20(30)	355(+400)	5

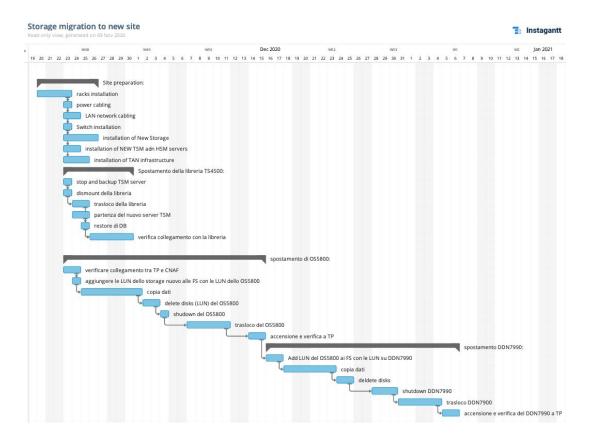
Considerazioni su Tape Repack (copia dati da SL8500 a TS4500)

- Procedura nativa
 - o tutti dati passano via unico TSM server -> limite supremo e' il canale FC
 - Max 2x16Gb=4GB/s
 - La copia viene fatta da un drive T10KD a un TS1160 (N+N)
 - Con 8 tape drive T10KD possiamo raggiungere (realisticamente) 1.6 GB/s
 - Per copiare 80TB ci vuole 590gg (~2 anni)
 - Con 16 tape drive (e stop per la PROD) 3.2GB/s (~1 anno)
- Facendo recall sul disco e migrazione sulla nuova libreria
 - Si puo usare piu server (nodi HSM)
 - Il limite e' il numero di tape drive T10KD (e solo meta' dei TS1160)
 - Altra meta dei TS1160 può rimanere in PROD
 - Stima del tempo ~ un anno

Repack (cont.)

- Prima o poi va fatto
- Se lo facciamo prima Non dovremo traslocare la libreria vecchia (SL8500)
 - Costi di manutenzione della libreria in crescita (ora 50K/anno, +15% dopo 10 anni)
 - Tape drive T10KD non trovano piu in vendita
 - Non dovremo pagare il servizio di trasloco ~50 KEuro
- Siamo ancora in tempo per farlo prima del trasloco (se partiamo subito)
- Occorre comprare le media per 80PB
 - JE (attuale, 20TB) ~ 4000 cassette => spesa immediata ~800 KEuro
 - 30TB per cassetta con nuovi tape drive previsti a meta' del 2021
- Trasloco della TS4500 può essere ritardato rispetto lo spostamento del disco
 - Va bene con schedule del LHC?
 - Va fatta la separazione dello cache dallo disco (in ogni caso)

Backup slides



Ceph Testbed

- Hardware
 - 8 nodes
 - 4 jbods (SAS) 60 X 8TB disks→ total 1920TB RAW space
- Focus of the second round of tests:
 - Installation procedure → based on a new developed puppet modules
 - EC 6+2, Failure domain host
 - Next steps → Performance tuning
 - Multiple service object storage and block storage in addition to POSIX FS
 - Finding optimal EC setup

Piano di spostamento

Object Storage S3 (Test) instance @CNAF

- GPFS v5 Shared Nothing cluster of 5 nodes
- 2 protocol nodes in Cluster Export Services (CES) to export Object Service:
 - o 8TB of disk space (easily expandable), triple replica
 - DNS load balancer
 - Integration with Openstack Cloud@CNAF Cluster under test (main goal: configure IBM Openstack Swift with Cloud@CNAF remote Keystone, to avoid Openstack Controller bottleneck for data throughput)
- In parallel with the GPFS v5 cluster, a CEPH cluster has been setup by SDDS as Cloud@CNAF Swift Object Storage backend:
 - High data throughput easily supported: data transfer flow from HAProxy to CEPH Monitors
- Performances and stability to be compared between CEPH and GPFS, tests are foreseen

Costi del disco

Year	Vendor	Tender price without VAT (-22%), Euro/TB real capacity	price/TB (-10% maintenance charge), Euro/TB	CERN price, (Replica 2, no VAT, no maintenance, EUR/TB
2014	DELL	151.26	136.1	172
2015	E4/DDN (2nd choice)	162	145.8	155
2016	SIELTE/Huawei	155.1	139.5	98
2017	TIM/Huawei	88.85	88.66	93
2018	TIM/Huawei	102.5	100.5	102,3
2019	E4/DDN	113.9	103.5	69.75
2020	Sielte/Huawei	79	70.87	60

Componenti del prezzo disco

- HW
 - o HDD
 - RAID controllers
 - Servers
 - Infrastruttura LAN e SAN
- Protection method
 - RAID risparmio sul numero dei dischi, electric power, spazio
 - Replicazione -> aumento di spesa di corrente elettrica
- Software
 - Costi del supporto:
 - in casa -> manpower (personale dedicato)
 - Out source -> pagamento manutenzione

