PADME (future) sensitivity: Axion-like particles and dark photons

> Luc Darmé INFN – LNF 27/10/2020

Istituto Nazionale di Fisica Nucleare

Feebly-Interacting Particles

- FIPs= "new neutral particle which interact with the SM via suppressed new interactions"
- Appear in various NP models aiming at dark matter, neutrino masses, strong CP problem, flavour etc ...

SM operator	r	Example FIPs						
Scalar portal	$ H ^{2}$	(d=2),		$ S ^{2}$			Can be	
Vector portal	$F_{\mu\nu}$	(d=2),		$F'^{\mu\nu}$	Dark photon		produced with light	
Neutrino portal	LH	(d=5/2),		N	Avion-like		SM fields, no need to high	
Axion portal	$\bar{f}_i \ \Gamma^{\mu}$	$f_j (d=3)$		$\partial_{\mu}a$	Particle		energy	
/ Terrinon portai				$\Psi\Gamma_{\mu}\Psi$	Γ			

Dark photon/ALP production via electron coupling

- ALP and DP production via g_{ae}/ε at PADME
- --> Associated production with a photon
- → Notice the dependence on the center of mass energy!

$$\sigma_{ae} \sim \alpha_{\rm em} g_{ae}^2 \frac{m_e^2}{2s} \log\left(\frac{s}{m_e^2}\right)$$

• Once produced we can observe the DP/ALP either visibly $(a, V \rightarrow e^+e^-)$ or purely as missing mass if it decays invisibly

Invisible DP search at PADME

Limit extracted from 1501.01867: Resonant feature not completely present

- The limit is backgrounddominated
 - → ~ 40k events at $4 \cdot 10^{13}$ poT → ~ 10M events at 10^{16} poT
- "Bump search" so limit on signal event scales as

 $N_{lim} \sim g_{ae}^2 \sim \sqrt{bkd}$

- Any reduction of the background will ^ω be useful
 - Show \sqrt{bkd} limit and cst. limits (with bkd at the level of $4\cdot 10^{13}$ poT)
- NA64, $5 \cdot 10^{12}$ EoT (limit for constant background) should be reached around 2024
 - Another order of magnitude at LDMX → ~10 years horizon

ALP search at PADME in missing mass

- PADME typically probes the electron coupling, focus on electrophilic ALPs
- For an ALP and DP production shares a (mostly) similar phenomenology

$$g_{ae}m_e \longleftrightarrow \sqrt{4\pi\alpha} \ \varepsilon$$

 \bullet Notice the resonant enhancement $\sim 10 {\rm x}$ in signal

DP visible decay at PADME

Limit extracted from 1501.01867

PADME, 4.10¹³ poT **NA48** 10^{-3} ETTA Recent NA64 limits for X17 boson. 10^{16} poT, \sqrt{bkd} • Uses a different analysis, NA6A 1912.11389, than the "main" NA64 E14experiment, based on a 10¹⁶ poT, bkd cst. purely beam dump $\omega 10^{-4}$ setup. 10^{18} poT, \sqrt{bkd} • Use a 17cm tungsten calorimeter as target • Region in the top-left corner in conflict with 10^{-5} $(q-2)_{e}$ $\alpha_D = 0.5$ 10^{-2} 2×10^{-2} 3×10^{-2} 6×10^{-3} m_{DP} [GeV]

ALP visible decay at PADME

[GeV

Bae

From 1710.03764 + NA64 recast

- Main difference with dark photon: no NA48 limits (from $\pi^0 \rightarrow \gamma V$ decays)
- Two different NA64 analysis
 - Include recast of which focused on X17 boson
- Excellent prospects for PADME
 this misses the resonant production

Conclusions

- Prospects for PADME without energy increases of $DA\Phi NE$
- In order to be competitive, $\sim 10^{16}$ positrons on target needed, background reduction is critical
- One exception: visible ALP, $a \rightarrow e^+e^-$ searches \rightarrow good mid-term prospects
- Varying the beam energy to sit on resonance could dramatically help search → factor x10 increases in signal for same background
- In invisible decay searches, not many upcoming experiment in a 10 years time frame

Backup slides

The big picture, dark photon invisible

The big picture, dark photon visible

