LABORATORIO COLD

CLAUDIO GATTI, CARLO LIGI, DANILO BABUSCI

- **E** Axions
- ¡ QUAX
- ¡ KLASH/FLASH
- COLD as a Quantum Lab

OUTLINE

AXIONS

$QUAX$ -ay Searh for QCD Axion with $m_a=40$ μeV

Phys. Rev. D **99**, 101101(R) (2019) Phys. Rev. Lett. **124**, 171801 (2020)

4

QUAX 2021-2025

2021 2022 2023 2024 2025

KLASH

- KLASH KLoe magnet for Axions SearcH
- **Proposal of a large Haloscope at LNF**
- Search of galactic axions in the mass range 0.3 -1 μ eV
- Large volume RF Cavity (22 m^3)
- **•** Moderate magnetic field (0.6 T)
- Copper rf cavity Q~600,000
- \blacksquare T 4.5 K

PVLAS

KLASH CDR arxiv:1911.02427

FLASH

KLOE magnet used for DUNE Near Detector:

- **ELASH: Finuda magnet for Light Axion SearcH**
- SC magnet built by Ansaldo Italia (ASG Supeconductors) for FINUDA experiment
- **EXECUTE: Similar sensitivity to galactic axions of KLASH**

- **1) Use FINUDA where it is now:**
	- Must build a concrete wall both to isolate it from the DAFNE ring e.m. emission and to have access to the experiment during DAFNE operations.
	- Must adapt the cryogenic transfer lines from the valve box to the magnet

Pros:

- ü *We avoid moving the magnet.*
- ü *We minimize the cryogenic transfer lines adaptation*

Cons:

- ü *hard to manage the cohabitation with DAFNE*
- ü *risk to found high e.m. noise when DAFNE beams circulating*

- **2) Use FINUDA in the KLOE hall:**
	- Must transport the magnet outside DAFNE (can be an hard work!)
	- Must adapt the cryogenic transfer lines as foreseen for KLASH

Pros:

- ü *FLASH has a dedicated space, well dimensioned for the commissioning*
- ü *We minimize the adaptation of cryogenic transfer lines*

Cons:

- ü *FINUDA dismantling can be a nightmare*
- ü *we have to wait the KLOE removal*

- **3)** Use FINUDA in ed. 10 (DAFNE cryogenic lab):
	- *this is only an hypotesis* we should verify if FINUDA fit the lab
	- Must transport the magnet outside DAFNE (can be an hard work!)
	- Must change the cryogenic transfer lines with new one (but much shorter)

Pros:

- ü *FLASH has a dedicated space, but not so large*
- ü *experiment and cryogenic plant are inside the same building*

Cons:

- ü *FINUDA dismantling can be a nightmare (same as 2)*
- ü *installation of magnet and detector can be hard due to limitate space*

$\overline{\mathsf{KLASH}} \to \mathsf{FLASH}$

No matter where FINUDA will be placed, we must first test its functionality.

With the magnet where it is now, we must:

- \checkmark renew the cryogenic service turret
- \checkmark refurbish the ancillary systems (vacuum pumps, diagnostics etc.)
- \checkmark check the magnet power supply working
- \checkmark adapt the cryogenic transfer lines
	- \triangleright then cool and energize the magnet

Next Steps:

- 1. Test of FINUDA Magnet
- 2. Site option (Dafne, KLOE hall, Dafne cryo Lab)
- 3. New mechanical design (and feasibility with Finuda)
- 4. Repeat simulation for potential discovery (expected very close to KLASH)
- 5. Define project timeline (check also competitor's timeline)
- 6. New CDR and approval in CSN2

From approval 2-3 years for construction and commissioning (?)

COLD AS A QUANTUM LAB

HEMT (6-20 GHz) 4K amplifier

Sample holder for SC chip at 10 mK for single photon device

4 RF lines installed from 300 K to MixCh

FET LNA 8-12 GHz and IQ-mixer (10-12 GHz)

Room T ampli & DAQ

SIMP (CSN V)

Units

LNF (Resp Naz)

INFN Pi

INFN Sa

TIFPA-FBK

CNR Nano **NEST**

CNR IFN

INRIM

TL + CBJJ single photon counter

Transmission measurement Tunable JJ

D Alesini et al 2020 J. Phys.: Conf. Ser. 1559 012020 D Alesini et al Journal of Low Temperature Physics https://doi.org/10.1007/s10909-020-02381-x

SUPERGALAX

Network of N interacting superconducting qubits

FET OPEN SUPERGALAX

CNR (IT, PI, exp)

INRIM (IT, exp)

INFN (IT, axion exp)

KIT (DE, exp)

Leibniz IPHT (DE, exp)

RUB (DE theory)

LU (UK, theory)

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 863313. Grant amount 2 456 232.50 Euro.

Superconducting coplanar wave guide resonator Single microwave photon with frequency ω $|0\rangle \stackrel{(0)}{=}$ $|CS\rangle$ \overrightarrow{E} **⊙** Magnetic field $\overline{}$ $\Delta \omega_{\rm S}$ ω_c

Objective: Develop a single microwave photon detector for axion search in QUAX experiment with an array of SC qubits.

https://supergalax.eu

DART WARS (CSN V): TWJPA

TravellingWave Josephson Parametric Amplifiers amplify microwave signal over a broad range adding the minimum noise set by quantum mechanics. Two devices developed in Eu with 3-wave and 4-wave mixing:

3-wave mixing device

DART

WARS

NFN

Istituto Nazionale di Fisica Nucleare

Detector Array Readout with TravellingWave AmplifieRS project recently approved by INFN

TWJPA

Multicavity scheme with broadband amplification with a TWJPA for axion experiment and the contract of the contract of the experimental setup of 10 mK plate

TWJPA

- **■** Measurements ongoing at LNF
- 3-wave mixing observed

QG ANALOGUES ON SC CHIP

DYNAMICAL CASIMIR EFFECT IN A SC CIRCUIT

²¹ Wilson, C., Johansson, G., Pourkabirian, A. *et al.* Observation of the dynamical Casimir effect in a superconducting circuit. *Nature* **479,** 376–379 (2011). https://doi.org/10.1038/nature10561

ON-CHIP QUANTUM INTERFERENCE OF A SUPERCONDUCTING MICROSPHERE (in a far future ...)

FIG. 1: Time scale $\tau_G \equiv 2Rh/(GM^2)$ is plotted as a function of the mass M for a sphere of radius R and a typical mass density of a metallic solid object 10^4 Kg/m³.

FIG. 3: (a) Sketch of the superconducting chip implementation of the quantum micromechanical interferometer protocol. Superconducting wires are shown in black and the different stages are separated by dashed lines. The SQUIDs are shown in red. (b) Illustration of the magnetic potential $V(x, y)$ in each of the steps. The position probability distribution in the x-axis is illustrated (dark blue) at the different stages of the protocol. Notice that both figures are not scaled and have only illustrative purposes.

arXiv:1603.01553v3

Analogue Gravity on a Superconducting Chip

D. Babusci

LNF

October 27, 2020

D. Babusci

D. Babusci (LNF) Analogue Gravity on a Superconducting Chip Cotober 27, 2020 1/11

 $A \cap A \rightarrow A \cap A \rightarrow A \Rightarrow A \rightarrow A \Rightarrow B$

 299

dc-SQUID array

M. P. Blencowe, H. Wang - Phil Trans. R. Soc. A378 201900224 (2020) - (2003.00382)

A schematic view of a dc-SQUID array transmission line (circuitry providing the space-time dependent flux bias not shown)

NB - JJ elements (crossed boxes) have the same I_c and C_J .

D. Babusci

 Ω

dc-SQUID array

dc-SQUIDs are threaded with an external magnetic flux varying from cell to cell and in time

Dynamics is more conveniently expressed in terms of the 'phase' coordinate φ_n associated with the voltages across C_0

$$
V_n = \frac{\Phi_0}{2\pi} \frac{\mathrm{d}\varphi_n}{\mathrm{d}t} \qquad \qquad \left(\Phi_0 = \frac{h}{2\,e}\right)
$$

Long wavelength $(\lambda \gg a)$ dynamics \rightarrow continuum limit \rightarrow phase 'field' $\varphi(x,t) \rightarrow$ wave equation (see Blencowe & Wang):

$$
-\frac{\partial^2 \varphi}{\partial t^2} + \frac{\partial}{\partial x} \left[c^2(x, t) \frac{\partial \varphi}{\partial x} \right] = 0 \tag{1}
$$

 $\mathbf{A} \equiv \mathbf{A} + \mathbf{A} + \mathbf{B} + \mathbf{A} + \math$

 Ω

dc-SQUID array

where the space-time dependent e.m. wave phase speed is:

$$
c(x,t) = c_0 \sqrt{\cos\left(\pi \frac{\Phi^{\text{ext}}}{\Phi_0}\right)}
$$

with

$$
c_0 = c(x, t) |_{\Phi^{\text{ext}} = 0} = a \sqrt{4 \pi \frac{I_c}{\Phi_0 C_0}}
$$

Propagating flux front moves with speed $u \rightarrow$ going into comoving frame

$$
(x,t) \rightarrow (x-u\,t,t)
$$

イロト 不優 トメ 差 トメ 差 トー (差)

 QQ

Effective horizon

the wave equation becomes

$$
\left\{-\frac{\partial^2}{\partial t^2} + 2 u \frac{\partial^2}{\partial x \partial t} + \frac{\partial}{\partial x} \left[c^2(x) - u^2\right] \frac{\partial}{\partial x}\right\} \varphi = 0 \quad (2)
$$

that can expressed in the general covariant form $(g = det g_{\mu\nu})$

$$
\frac{1}{\sqrt{-g}}\,\partial_\mu\left(\sqrt{-g}\,g^{\mu\nu}\,\partial_\nu\,\varphi\right)=0
$$

with effective metric

$$
g^{\mu\nu} = \frac{1}{c(x)} \begin{pmatrix} -1 & u \\ u & c^2(x) - u^2 \end{pmatrix}
$$

i.e., event horizon $(g_{00} = 0)$ where $c(x) = u$

 200

重き イヨメート

舌

Effective horizon

Example - a flux step of magnitude $\Phi^{\text{ext}} = 0.2 \Phi_0$ moving with speed *u* = 0*.*95 *c*⁰

Hawking radiation

Quantization: $\varphi \rightarrow \hat{\varphi} \rightarrow$ photon pair production from e.m. vacuum near to $x_h \rightarrow$ analogue Hawking radiation with temperature

$$
\mathcal{T}_{\mathrm{H}} = \frac{\hbar}{2\pi k_{\mathrm{B}}} \mid \frac{\partial c(x)}{\partial x} \mid_{x=x_{h}} \tag{3}
$$

Radiated power in the comoving frame (Nation et al., Phys. Rev. Lett 103, 087004 (2009) - 0904.2589)

$$
P=\frac{\pi}{12\,\hbar}\,\left(k_{\mathrm{B}}\;{\cal T}_{\mathrm{H}}\right)^2
$$

NB - For a detector at the end of the line, the radiation will be doppler shifted yielding higher power. However, the rate of emitted photons remains approximately unchanged.

 $\mathbf{A} \otimes \mathbf{A} \otimes \mathbf{$

 Ω

Hawking radiation

Example

- phase speed step length \sim 10 *a*
- step height ≈ 0.1 c_0

$$
|\frac{\partial c(x)}{\partial x}| \approx 0.01 c_0 \qquad \rightarrow \qquad \mathcal{T}_{\mathrm{H}} = \frac{0.01}{\pi k_{\mathrm{B}}} \sqrt{\frac{\hbar e I_c}{C_0}} \qquad (4)
$$

 $I_c = 5 \mu A$; $C_0 = 1 \text{ fF}$ \rightarrow $T_H \approx 70 \text{ mK}$

With the bias pulse considered and $T_H = 120$ mK, Nation et al. have estimated an average emission rate of one photon per pulse for \sim 4800 SQUID's. (Increase the pulse repetitions in order to accumulate sufficient photon counts to verify the HR)

D. Babusci

 $\mathbf{A} \equiv \mathbf{A} + \mathbf{A} + \mathbf{B} + \mathbf{A} + \math$

 200

Unlike a real BH, both photons may be detected in this device.

LAB frame: a detector at the far end of the array will see two incoming photons. One photon in front of the horizon, and one behind, with the former having a slightly higher propagation velocity.

Single-shot detection of these photons using (one or more) tunable-phase qubit detectors coupled to the array. By repeatedly sending flux pulses down the bias line, the black body spectrum may be probed by tuning the qubit resonant frequency.

D. Babusci

 Ω

Additionally, information on the cross horizon correlations between the emitted photon pairs can be established though coincidence detection \rightarrow unambiguous claim of HR as the source of the emitted photons.

Other detection methods proposed (measurements of the microwave field quadrature, second order correlation of the photon number as well their entanglement) are under investigation.

The ability to realize low noise, quantum limited microwave photon detectors, and dc-SQUID arrays comprising thousands of unit cells operating at a few tens of mK and below, shows promise for demonstrating strong microwave HR signals.

D. Babusci

 200

Outlook

Other effects can be explored with this device (Nation et al., Rev. Mod. Phys. 84, 1 (2012)) - (1103.0835):

- Unruh effect: an accelerated observer see the Minkowski vacuum in a thermal state with temperature \propto to the acceleration
- Dynamical Casimir effect

Other issues (Cosmological particle creation; ER=EPR)??

Also from the experimental side, much remains to be explored; the JTWPA design needs to be adapted so as to enable propagating flux pulse/step biasing, and microwave photon detection circuitry suitable for verifying correlated photon pairs needs to be developed.

D. Babusci

イロト イ母 トイヨ トイヨ トー

 200

舌