Threshold resummation of Drell-Yan rapidity distribution

Prasanna K. Dhani INFN, Genova

based on Phys.Rev.D 97 (2018) 5, 054018 [1805.01186] (See also) Phys.Rev.D 97 (2018) 5, 054024 [1708.05706]

in collaboration with

Pulak Banerjee, Goutam Das, V. Ravindran

@Journal Club, 18/11/2020

Outline

- Inclusive Cross Section
- >Fixed Order Predictions and Associated Problems
- > All Order Resummation
- >Rapidity Spectrum
- > Fixed Order Vs All Order
- Summary & Future Outlook

Drell-Yan: Inclusive Production

Process:

$$h_1(p_1^{\mu}) + h_2(p_2^{\mu}) \to l\bar{l}(Q^{\mu}) + X$$

Parton model factorization

$$Q^{2} \frac{d\sigma}{dQ^{2}} = \sigma_{0}(Q^{2}, \tau) \int_{0}^{1} dx_{1} \int_{0}^{1} dx_{2} \int_{0}^{1} dz \, \delta(\tau - x_{1}x_{2}z)$$

$$\times f_{a}^{h_{1}}(x_{1}, \mu_{F}^{2}) f_{b}^{h_{2}}(x_{2}, \mu_{F}^{2}) \Delta^{ab} \left(z, \alpha_{s}(\mu_{R}^{2}), \frac{Q^{2}}{\mu_{R}^{2}}, \frac{Q^{2}}{\mu_{F}^{2}}\right)$$

$$\tau = \frac{Q^2}{s(=2p_1.p_2)}; z = \frac{Q^2}{x_1x_2s} = \frac{Q^2}{\hat{s}} \qquad \begin{array}{l} \mu_R : \text{renormalization scale} \\ \mu_F : \text{mass factorization scale} \end{array}$$

Structure of Partonic Coefficient Function

At each perturbative order $z \rightarrow 1$ (Soft/Threshold limit) $\Delta(z) = \Delta^{\text{sing.}}(z) + \Delta^{\text{reg.}}(z)$ $\Delta^{\text{sing.}}(z) = C_{\delta}(\alpha_s)\delta(1-z) + \sum_{i=0}^{\infty} C_{\mathcal{D}_i}(\alpha_s)\mathcal{D}_i(z) + \text{Coll. Logs}$ Sub-leading $D_i(z) \equiv \left\lceil \frac{\ln^i(1-z)}{1-z} \right\rceil$ $\int_0^1 dz f(z) \mathcal{D}_i(z) \equiv \int_0^1 dz \frac{f(z) - f(1)}{1 - z} \ln^i(1 - z)$

One of the solutions: All order resummation

Can be large enough to potentially spoil a perturbative series

Solution: Threshold resummation, a technique to include / resum these logarithms to all orders in perturbation theory

[Sterman (1987), Catani-Trentadue (1989)]

Can be used to improve the calculation accuracy that needs high precision and has been very successful in perturbative QCD

Mellin Space: Phase-Space Factorization

- Resummation is most naturally performed in Mellin, N-space
- >Underlying reason: factorization of phase-space happens in N-space not in z-space ⇒ threshold logarithms are exponentiated

$$\sigma_N(Q^2) \equiv \int_0^1 d\tau \tau^{N-1} \sigma(Q^2, \tau) \qquad z \to 1$$

$$= f_N * f_N * \Delta_N \qquad N \to \infty$$

Under Mellin transformation

$$\left[\frac{\ln^i(1-z)}{1-z}\right]_+ \to (\ln N)^{i+1} + \dots + \text{sub-leading terms}$$

Resummation

Contribution to the threshold logarithms to all orders in perturbation theory is known to be an exponential of the form:

$$\Delta_N^{\text{sing.}} \to \Delta_N^{\text{res.}} = g_0(\alpha_s) e^{G(N,\alpha_s)}$$
Born kinematics

where

$$G(N, \alpha_s) = \ln N g_1(\lambda) + g_2(\lambda) + \alpha_s g_3(\lambda) + \dots$$

$$1 \approx \lambda = \beta_0 \alpha_s \ln N$$

Consecutive terms are separated by a power of strong coupling

Resummation: Accuracy

- Accuracy: Power of the threshold logarithms included in $G(N, \alpha_s)$ relative to the strong coupling
- To have next(k-times)-leading logarithmic accuracy $(N^k LL)$, g_{k+1} must be included and g_0 must be computed up to α_s^k order
- Expansion of $\Delta_N^{\rm res.}$ with accuracy $N^n LL$ in powers of $\alpha_s(Q^2)$ up to order ${\bf n}$ correctly predicts all the threshold enhanced logarithmic contributions in $\Delta_N^{\rm sing.}$ up to the same order

Resummation: Matching

- Exclusively using resummation to calculate an observable loses information about kinematic regions away from threshold and hence, not recommended
- Adding a fixed order result to the resummed calculation retains the information that is not enhanced at threshold and it is done through a process called matching to avoid double counting

$$\sigma^{\text{res.}}(Q^{2},\tau) = \sigma^{\text{f.o.}}(Q^{2},\tau) + \sigma_{0}(Q^{2},\tau) \frac{1}{2\pi i} \int_{c-i\infty}^{c+i\infty} dN \tau^{-N} (f_{N})^{2} [\Delta_{N}^{\text{res.}} - \Delta_{N}^{\text{res.}}|_{\text{f.o.}}]$$

A parameter determined by resummation prescription

Resummation: Prescriptions

The Mellin inversion involves integration of the running strong coupling at the Landau pole

$$N = N_L = \exp\left(\frac{1}{2\beta_0 \alpha_s}\right)$$

- Therefore naively taking inverse Mellin transform of the resummation formula will include information from the Landau pole
- A prescription which makes a divergent series asymptotic must be adopted to remove these spurious effects from the resummation calculation

Prescriptions: Minimal Vs Borel

Minimal(MP)

Borel(BP)

[Catani, Mangano, Nason, Trantadue (1996)] [Forte, Ridolfi, Rojo, Ubiali, Abbate (2006, 2007)]

- Differ in the way the high-order behaviour of the divergent series is handled
- In particular, they differ in sub-leading terms that do not increase as rapidly as threshold logarithms of the desired logarithmic accuracy
- To further pinpoint, in the MP all the 1/N suppressed terms in Nspace are set to 0, but this leads to (1-z) power suppressed terms in zspace, while in the BP the opposite is true

State-of-the-art Calculations

- Threshold resummation method has been very successful for the inclusive cross section
- Using resummation the theoretical uncertainty from missing higher orders has been brought down to few % for the Higgs production

[Catani-de Florian-Grazzini-Nason (2003), Bonvini-Marzani-Muselli-Rottoli (2016)]

- Similar high accuracy has also been achieved for the lepton pair production through Drell-Yan
 - [Moch-Vogt (2005), Catani-Cieri-de Florian-Ferrera-Grazzini (2014)]
- >Obvious extension: to more differential observables such as Rapidity

DY rapidity distribution

Rapidity distribution is given by

$$Q^{2} \frac{d\sigma}{dQ^{2} dY}(\tau, Y, Q^{2}) = \sigma_{0}(Q^{2}, \tau) \int_{0}^{1} dx_{1} \int_{0}^{1} dx_{2} \int_{0}^{1} dz_{1} \int_{0}^{1} dz_{2} \delta(x_{1}^{0} - x_{1}z_{1}) \delta(x_{2}^{0} - x_{2}z_{2})$$

$$\times f_a^{h_1}(x_1, \mu_F^2) f_b^{h_2}(x_2, \mu_F^2) \Delta_y^{ab} \left(z_1, z_2, y, \alpha_s(\mu_R^2), \frac{Q^2}{\mu_R^2}, \frac{Q^2}{\mu_F^2} \right)$$

$$\tau = \frac{Q^2}{s(=2p_1.p_2)}; x_{1,2}^0 = \sqrt{\tau}e^{\pm Y} \qquad y = Y - \frac{1}{2}\ln\left(\frac{x_1}{x_2}\right); z = z_1z_2 = \frac{\tau}{x_1x_2}$$

Fixed order: Integrable Singularity

Similarly, to the inclusive cross section

$$z_{1,2}
ightarrow 1$$
 (Soft/threshold limit) $\Delta(z_1,z_2) = \Delta^{\mathrm{sing.}}(z_1,z_2) + \Delta^{\mathrm{reg.}}(z_1,z_2)$

$$\Delta^{\text{sing.}}(z_1,z_2) = C_{\delta}(\alpha_s)\delta(1-z_1)\delta(1-z_2) + \sum_{i,j=-1}^{\infty} C_{\mathcal{D}_{ij}}\mathcal{D}_i(z_1)\mathcal{D}_j(z_2) + \text{Coll. logs}$$
 Sub-leading
$$\mathcal{D}_{-1}(z_j) = \delta(1-z_j)$$

Rapidity Resummation: Comments

>It follows similar steps as for the inclusive case

Technically it is more difficult as hadronic rapidity complicates the factorization of soft gluon phase space

$$\delta(x_1^0 - x_1 z_1) * \delta(x_2^0 - x_2 z_2)$$

>Unlike inclusive case, two integral transforms are required for the rapidity distribution to do the same

Rapidity Resummation: Existing Approaches

In methods currently employed in phenomenological studies: a Fourier transform w.r.t. rapidity and Mellin transform w.r.t. z

$$\{z_1, z_2\} \leftrightarrow \{z, y\}$$

- \Rightarrow By E. Laenen and G. F. Sterman: it was conjectured to provide an approximation to the threshold resummed rapidity spectrum at y=0
- Performing Mellin-Fourier (M-F) transform and neglecting some terms, one could express resummation in rapidity effectively in terms of rapidity integrated resummed exponent

[Mukherjee-Vogelsang (2006), Bolzoni (2006)]

Rapidity Resummation: Existing Results

>Following the approach, a phenomenologically complete study with higher resummation accuracy (NNLO+NNLL) was achieved both for neutral as well as charged DY

[Bonvini-Forte-Ridolfi (2010)]

>Similar studies are also performed from the SCET side

[Becher-Neubert-Xu (2007)]

 \Rightarrow In all the above studies: $\left| \frac{\ln^i(y)}{y} \right| \to 0$

Existing Approaches: A Different One

There is a second approach originally applied to Feynman variable (x_F) which includes distributions in both partonic rapidity (y) and inclusive scaling variable, z

[Catani-Trentadue (1989)]

Two Mellin (M-M) transforms were performed corresponding to two variables to have phase-space factorization and include all the threshold enhanced logarithms into an exponential

$$\int_0^1 dx_1^0 (x_1^0)^{N_1 - 1} \int_0^1 dx_2^0 (x_2^0)^{N_2 - 1} \delta(x_1^0 - x_1 z_1) \delta(x_2^0 - x_2 z_2)$$

Existing Result and Our Extension

The latter approach was successfully applied to both Feynman variable and rapidity spectrum at NLO+NLL accuracy and shown to improve the existing result in high- x_F/Y region resulting in better agreement with the data [Westmark-Owens (2017)]

We extended the above work to a higher resummation accuracy i.e. NNLO+NNLL in M-M space and presented the predictions for both Higgs and DY rapidity spectrum at the LHC energies

[Banerjee-Das-Ravindran+PKD (2017, 2018)]

Comments

One of the consequences of the resummation exponent existing in M-M space is that the Landau pole no longer corresponds to a single Mellin moment, instead the Landau pole occurs on the curve

$$N_1 N_2 = \exp\left(\frac{1}{\alpha_s \beta_0}\right)$$

⇒While using MP, the paths of the two inverse Mellin transforms must be to the right of all poles in both N_1 and N_2 space, but performed in such a way that the Landau pole lies to the right of the paths

Rapidity Resummation: Matching

Using MP

$$\sigma^{\text{res.}}(Q^{2}, \tau, Y) = \sigma^{\text{f.o.}}(Q^{2}, \tau, Y) + \sigma_{0}(Q^{2}, \tau, Y) \int_{c_{1} - i\infty}^{c_{1} + i\infty} \frac{dN_{1}}{2\pi i} \int_{c_{2} - i\infty}^{c_{2} + i\infty} \frac{dN_{2}}{2\pi i}$$

$$\times \tau^{-\frac{N_1+N_2}{2}} e^{Y(N_2-N_1)} f_{N_1} f_{N_2} \left[\Delta_{N_1,N_2}^{\text{res.}} - \Delta_{N_1,N_2}^{\text{res.}} |_{\text{f.o.}} \right]$$

Phenomenology: $\sqrt{s} = 14 \, \mathrm{TeV}$; $Q = M_Z$; PDF: MMHT14(68cl)

>Fixed order from Vrap [Anastasiou-Dixon-Melnikov-Petriello (2003)]

Fixed Order Vs All Order

Resummation increases the cross section across Y-values

Better overlap compared to F.O.

But large uncertainty band

Reason:

[Banerjee-Das-Ravindran+PKD (2018)]

Central scale choice: $\mu_R = \mu_F = M_Z$

Only qQ-channel contributes

Most PDFs are lack of resummation effect

qQ Vs All other channels

qQ: resummation brings more stability

From $M_Z/2$ to $2M_Z$

F.O. decreases by 2.36 %

Corresponding number for the resummation one is 1.53%

[Banerjee-Das-Ravindran+PKD (2018)]

Fixed Order Vs All Order

```
NNLO + NNLL
         NLO
                       NLO + NLL
                                           NNLO
Y
    76.758 \pm 5.28\% 78.867 \pm 7.56\% 79.182 \pm 0.98\%
0.0
                                                         79.568 \pm 2.02\%
    75.727 \pm 5.26\% 77.797 \pm 7.53\% 77.968 \pm 1.04\%
                                                         78.340 \pm 2.03\%
0.8
    72.295 \pm 5.17\% 74.274 \pm 7.45\% 74.239 \pm 1.11\%
                                                         74.588 \pm 2.08\%
    65.953 \pm 5.04\% 67.772 \pm 7.33\% 67.678 \pm 1.21\%
                                                         67.985 \pm 2.11\%
2.4
```

[Banerjee-Das-Ravindran+PKD (2018)]

$$K_{NLO} \in \{1.3, 1.2\}$$
 $K_{NNLO} \in \{1.37, 1.30\}$

$$K_{N(N)LO+N(N)LL} \sim 1.2$$

Q-integrated Rapidity Distribution

[Banerjee-Das-Ravindran+PKD (2018)]

M-MVs M-F

y	$(rac{\mu_R}{M_Z},rac{\mu_F}{M_Z})$	LO	LL _{M-F}	LL _{M-M}	NLO	NLL _{M-F}	NLL _{M-M}	NNLO	NNLL _{M-F}	NNLL _{M-M}
0.0	(2, 2)	72.626	+0.988	+3.219	73.450	+1.639	+1.796	70.894	+0.630	+0.646
0.0	(2, 1)	63.197	+0.768	+2.595	70.625	+0.761	+1.017	70.360	+0.292	+0.317
0.0	(1, 2)	72.626	+1.095	+3.577	73.535	+1.912	+1.760	70.509	+0.510	+0.395
0.0	(1, 1)	63.197	+0.851	+2.887	71.395	+0.858	+0.901	70.537	+0.248	+0.167
0.0	(1, 1/2)	53.241	+0.621	+2.216	67.581	+0.156	+0.140	69.834	-0.001	-0.094
0.0	(1/2, 1)	63.197	+0.953	+3.278	72.355	+0.945	+0.681	70.266	+0.091	-0.015
0.0	(1/2, 1/2)	53.241	+0.695	+2.504	69.259	+0.102	-0.154	70.283	-0.039	-0.146

[Banerjee-Das-Ravindran+PKD (2018)]

For the M-F results, we use publicly available code ReDY

[Bonvini-Forte-Ridolfi (2010)]

>We find that predictions from M-F and M-M are comparable at higher resummation accuracy in the central rapidity region.

Summary & Future Outlook

- Using threshold resummation technique, we have included large threshold logarithms in both partonic rapidity and scaling variable up to NNLO+NNLL accuracy for the lepton pair production
- Resummation has been performed in M-M space where kinematics gets factorized and matched to fixed order result to have better prediction for the rapidity spectrum
- Finally, we have presented our predictions for the LHC-14 and compared our results with the existing results in the literature.

Comments & Future Outlook

- Note that, I only talked about resummation of dominant contributions in the threshold limit i.e. distributions in the partonic variables.
- ♦ For some observables, next-to dominant terms such as $ln(1 z_i)$ are important and should be included to high orders
- >Very recent work from SCET suggesting a formalism for generalized threshold limit i.e.

$$z_1 \rightarrow 1$$
 for arbitrary z_2 and vice versa [Lustermans-Michel-Tackmann (2019)]

>It would be interesting to see such a formalism from QCD side

Comments & Future Outlook

>Fixed order calculations also contain logarithms that are enhanced in the small-z limit suggesting their inclusion to high orders in perturbation theory. Such terms are of the form

$$\frac{\ln^i(z)}{z}$$
 enhanced in the limit $z \to 0$

[Balitsky-Fadin-Kuraev-Lipatov]

Recent work on inclusive Higgs production which includes towers of logarithms in both extremes

[Bonvini-Marzani (2018)]

Comments & Future Outlook

>Fixed order calculations also contain logarithms that are enhanced in the small-z limit suggesting their inclusion to high orders in perturbation theory. Such terms are of the form

$$\frac{\ln^i(z)}{z}$$
 enhanced in the limit $z \to 0$

[Balitsky-Fadin-Kuraev-Lipatov]

Recent work on inclusive Higgs production which includes towers of logarithms in both extremes

[Bonvini-Marzani (2018)]

Thank You