Machine Learning for BSM Searches A New Perspective

Charanjit Kaur Khosa

Theory Seminar, 4th November 2020

Outline

- A. Why to use Machine Learning for BSM searches?
- B. Basics of Machine Learning methods
- C. Anomaly detection
- D. SMEFT analysis
- E. Summary

Physics Beyond the SM

Standard Model: the mysteries

- Dark matter
- Neutrino masses
- Baryon Asymmetry of the Universe

Standard Model: the unexplained

- Flavour puzzle
- Hierarchy problem
- Fourth fundamental force (gravity) is not included

Current Status of BSM

We have not seen any signal for New Physics (NP) so far!

Nature of BSM

- New Physics signature is beyond the reach of the current colliders
- Known BSM models do not include the "correct" model

How do we search for it?

- Traditional analysis strategies are not suitable
- Model dependent searches (pre-bias)

Need to go beyond these limitations

- 1. Large volumes of data
- 2. High dimensionality of the data sets
- 3. Large number of model parameters

"Hidden" correlations in the data can be explored using "powerful" ML techniques

ARTICLE

Received 19 Feb 2014 | Accepted 4 Jun 2014 | Published 2 Jul 2014

DOI: 10.1038/ncomms5308

Searching for exotic particles in high-energy physics with deep learning

P. Baldi¹, P. Sadowski¹ & D. Whiteson²

Collisions at high-energy particle colliders are a traditionally fruitful source of exotic particle discoveries. Finding these rare particles requires solving difficult signal-versus-background classification problems, hence machine-learning approaches are often used. Standard approaches have relied on 'shallow' machine-learning models that have a limited capacity to learn complex nonlinear functions of the inputs, and rely on a painstaking search through manually constructed nonlinear features. Progress on this problem has slowed, as a variety of techniques have shown equivalent performance. Recent advances in the field of deep learning make it possible to learn more complex functions and better discriminate between signal and background classes. Here, using benchmark data sets, we show that deep-learning methods need no manually constructed inputs and yet improve the classification metric by as much as 8% over the best current approaches. This demonstrates that deep-learning approaches can improve the power of collider searches for exotic particles.

Low-level features: $p_T^{l_1}, p_T^{l_2},$

 $p_{T}^{l_{1}}, p_{T}^{l_{2}}, \sum p_{T}^{j}, MET, N_{j}$

High-level features: Axial MET, M_{T_2} , razor quantities

SUSY benchmark: chargino production (lepton+MET final state)

Technique	Low-level	High-level	Complete
AUC			
BDT	0.850 (0.003)	0.835 (0.003)	0.863 (0.003)
NN	0.867 (0.002)	0.863 (0.001)	0.875 (<0.001)
NN _{dropout}	0.856 (<0.001)	0.859 (<0.001)	0.873 (<0.001)
DN	0.872 (0.001)	0.865 (0.001)	0.876 (<0.001)
DN _{dropout}	0.876 (<0.001)	0.869 (<0.001)	0.879 (<0.001)
Discovery sigr	nificance		
NN	6.5σ	6.2 <i>o</i>	6.9 <i>o</i>
DN	7.5σ	7.3σ	7.6σ

BDT, boosted decision tree; DN, deep neural network; NN, shallow neural network; SUSY, supersymmetry particle.

Neural Networks in a Nutshell

Neural Network (NN) Basic Structure

Training sample validation sample test (real) sample

- A. Input layer nodes: set of observables(kinematical features)/images
- B. Number of hidden layers (shallow or deep NN)
- C. Output layer: predictions

Schematic of a Neural Network

Train the network using training sample and make predictions for the test (real) dataset

How To Train Your NN?

NN Parameters and Concepts

Bias-Variance Trade-Off

Broad Categories of Machine Learning

Convolutional Neural Networks

n3 units

Autoencoders

Could be used as anomaly detector:

- 1. Train with the background sample.
- 2. Compare how the reconstructed output is different from the input (reconstructed error).

Reconstructed error will be more for the anomalous event.

T.Heimel, G.Kasieczka, T.Plehn and J.M.Thompson, SciPost Phys.6 (2019), 030 M. Farina, Y. Nakai and D. Shih, arXiv: 1808.08992

ARTICLE

Received 19 Feb 2014 | Accepted 4 Jun 2014 | Published 2 Jul 2014

DOI: 10.1038/ncomms5308

Searching for exotic particles in high-energy physics with deep learning

P. Baldi¹, P. Sadowsk Deep Learning methods improve

Collisions at high-energy particle colliders tea collionally multiply purce di ekclidoratich COLLEE SEALCHLES discoveries. Finding these rare particles requires solving difficult signal-versus-background classification problems, hence machine-learning approaches are often used. Standard approaches have relied on 'shallow' mathive-learning model that way a linite, analy to Standard Standard MET final state)

learn complex nonlinear functions of the inputs, and rely on a painstaking search through manually constructed nonlinear features. Progress on this problem has slowed, as a variety of techniques have shown equivalent performance. Recent advances in the field of deep learning make it possible to learn more complex functions and better discriminate between signal and background classes. Here, using benchmark data sets, we show that deep-learning methods need no manually constructed inputs and yet improve the classification metric by as much as 8% over the best current approaches. This demonstrates that deep-learning approaches can improve the power of collider searches for exotic particles.

Low-level features: $p_T^{l_1}, p_T^{l_2}, \sum p_T^{j}, MET, N_j$

High-level features: Axial MET, M_{T_2} , razor quantities

Technique	Low-level	High-level	Complete	
AUC				
BDT	0.850 (0.003)	0.835 (0.003)	0.863 (0.003)	
NN	0.867 (0.002)	0.863 (0.001)	0.875 (<0.001)	
NN _{dropout}	0.856 (<0.001)	0.859 (<0.001)	0.873 (<0.001)	
DN	0.872 (0.001)	0.865 (0.001)	0.876 (<0.001)	
DN _{dropout}	0.876 (<0.001)	0.869 (<0.001)	0.879 (<0.001)	
Discovery sigr	nificance			
NN	6.5σ	6.2 <i>σ</i>	6.9 <i>0</i>	
DN	7.5σ	7.3σ	7.6σ	

Background

BDT, boosted decision tree; DN, deep neural network; NN, shallow neural network; SUSY, supersymmetry particle.

More Recent Review

nttps://doi.org/10.1038/s41586-018-0361-2

Machine learning at the energy and intensity frontiers of particle physics

Alexander Radovic¹*, Mike Williams²*, David Rousseau³, Michael Kagan⁴, Daniele Bonacorsi^{5,6}, Alexander Himmel⁷,

"Machine Learning techniques"

increase the discovery potential of

Table 1 the Higg	the	expe	rime	nts	study of
				1.9	

REVIEW

Machine learning at the energy and intensity frontiers of particle physics

Alexander Radovic¹*, Mike Williams²*, David Rousseau³, Michael Kagan⁴, Daniele Bonacorsi^{5,6}, Alexander Himmel⁷, Adam Aurisano⁸, Kazuhiro Terao⁴ & Taritree Wongjirad⁹

Our knowledge of the fundamental particles of nature and their interactions is summarized by the standard model of particle physics. Advancing our understanding in this field has required experiments that operate at ever higher energies and intensities, which produce extremely large and information-rich data samples. The use of machine-learning techniques is revolutionizing how we interpret these data samples, greatly increasing the discovery potential of present and future experiments. Here we summarize the challenges and opportunities that come with the use of machine learning at the frontiers of particle physics.

Table 1 Effect of machine learning on the discovery and study of the Higgs boson					
Analysis	Years of data collection	Sensitivity without machine learning	Sensitivity with machine learning	Ratio of <i>P</i> values	Additional data required
$\frac{1}{CMS^{24}}$ $H \rightarrow \gamma \gamma$	2011–2012	2.2 σ , $P = 0.014$	2.7 <i>σ</i> , <i>P</i> = 0.0035	4.0	51%
$\begin{array}{c} {\rm ATLAS^{43}} \\ {\rm H} \rightarrow \tau^+ \tau^- \end{array}$	2011–2012	2.5 σ , P = 0.0062	3.4 σ , $P = 0.00034$	18	85%
$ATLAS^{99}$ $VH \rightarrow bb$	2011–2012	$1.9\sigma, P = 0.029$	2.5 <i>σ</i> , <i>P</i> = 0.0062	4.7	73%
$ATLAS^{41}$ $VH \rightarrow bb$	2015–2016	2.8 <i>σ</i> , <i>P</i> = 0.0026	3.0 <i>о</i> , <i>P</i> = 0.00135	1.9	15%
CMS^{100} $VH \rightarrow bb$	2011–2012	1.4 <i>σ</i> , <i>P</i> = 0.081	2.1 <i>σ</i> , <i>P</i> = 0.018	4.5	125%

A. Radovic et al., Nature 560(2018) no. 7716,41

ML Techniques at Various Experimental Analysis Steps

- A. Decision-making for data storage
- B. Jet reconstruction and heavy flavor tagging
- C. Track reconstruction
- D. Signal and background classification
- E. Event generation

New Potential for BSM searches

Incomplete list of references

- SMEFT (new physics deformations)
- Top tagging
- Anomaly detection
- Dark matter searches
- DNN likelihood
- Decoding black box
- Many more..

- J. Brehmer et al., Phys. Rev. Lett. 121 (2018) 111801, Phys. Rev. D 98 (2018) 052004, F.F. Freitas, CKK, V. Sanz, Phys. Rev. D 100 (2019) no.3, 035040 [arXiv:1902.05803 [hep-ph]].
- G.Kasieczka, T.Plehn, M.Russell and T.Schell, JHEP 1705 (2017) 006.
- arXiv: 1807.10261, Shih et al. 1808.08992[hep-ph]. Heimel et al., SciPost Phys.6 (2019), 030. **CKK** and Veronica Sanz, arXiv:2007.14462 [cs.LG] and others
- CKK, L. Mars, J. Richards and V. Sanz, J. Phys. G 47 (2020) no.9, 095201. CKK, V. Sanz and M. Soughton [arXiv:1910.06058 [hep-ph]].
- A.Coccaro, M.Pierini, L.Silvestrini and R. Torre, Eur. Phys. J. C 80 (2020) no.7, 664 [arXiv:1911.03305 [hep-ph]].
- G. Kasieczka, S. Marzani, G. Soyez and G.Stagnitto, JHEP 09 (2020), 195 [arXiv:2007.04319 [hep-ph]].
 T. Faucett, J. Thaler and D. Whiteson, [arXiv:2010.11998 [hep-ph]].

(Deep)Neural Networks, CNNs, (V)Autoencoders, Clustering, GNNs,..

Classification, Jet tagging, Anomalous Jet, Anomalous Events, Limit setting, Resonance,..

> Assisting BSM detection

Model Independent Searches

Image taken from 2001.04990[arxiv: hep-ph]

Classification Without Labels (CWoLa)

E.M.Metodiev, B.Nachman and J.Thaler, JHEP 10 (2017), 174, [arXiv:1708.02949 [hep-ph]]

Other Recent Developments

- Learning New Physics from a Machine: R.T.D'Agnolo and A.Wulzer, Phys. Rev. D 99 (2019) no.1, 015014
- Guiding New Physics Searches with Unsupervised Learning: A. De Simone et al., Eur. Phys. J. C 79 (2019) no.4, 289, [arXiv:1807.06038].
- Using Variational Autoencoders: Cerri et al., JHEP 05 (2019), 036, [arXiv:1811.10276 [hep-ex]]. Cheng et al.,[arXiv:2007.01850].
- Uncovering latent jet substructure: B.M.Dillon et al., Phys. Rev. D 100 (2019) no.5, 056002)[arXiv:1904.04200].
- Tag N' Train: O.Amram and C.M.Suarez, [arXiv:2002.12376].
- Anti QCD tagger: J. A.Aguilar-Saavedra, J. H. Collins and R. K. Mishra, JHEP 11 (2017), 163, [arXiv:1709.01087].
- Anomaly Detection with Density Estimation: B. Nachman and D.Shih, Phys. Rev. D 101 (2020), 075042, [arXiv:2001.04990]
- Simulation Assisted Likelihood-free Anomaly Detection: A.Andreassen et al., Phys. Rev. D 101 (2020) no.9, 095004 [arXiv:2001.05001].

For other proposals, see recent review by Nachman: Anomaly Detection for Physics Analysis and Less than Supervised Learning[arXiv:2010.14554 [hep-ph]].

Creating Anomaly Aware Methods

Anomaly Awareness (AA) a new algorithm for anomaly detection (C. K. Khosa & V. Sanz. 2020)

Which type of BSM we consider?

Boosted Regime

What type of Input data?

Jet Images

Which model do we use?

CNN

Our algorithm learns about normal events (SM) while being made aware of an array of anomalies (BSM) in a way that it becomes sensitive to unseen BSM anomalies.

 Lets see how AA works in a well-known topology for new physics searches: Fat Jets

- Demonstrate its use against an array of BSM scenarios:
- 1.EFT Higgs,
- 2.Resonances \longrightarrow leading

jet with 2, 3 or 4 subsets

The "Algorithm"

Algorithm 1 Anomaly Awareness (AA).
Important parameters are λ_{AA} , p_{An}^{min} , p_{An}^{max} .
Prior Run
Initialize test: train splitting of Normal (N) dataset
Initialize hyper parameters
Initialize Model (CNN architecture)
for Training over the epochs do
Cross entropy loss
Update model parameters.
end for
Get accuracy for D_{test} and D_{train}
This run sets the hyper-parameters for the AA run
Anomaly Detection Run
Load the Anomaly (An) dataset
Initialize amount of data w.r.t. the Normal dataset
Initialize λ_{AA}
for Training over the epochs do
l_1 = Cross entropy loss (Normal dataset)
l_2 = Cross entropy loss (Anomaly dataset with Uniform
Distribution)
$Loss = l_1 + \lambda_{AA} l_2$
end for
Get softmax probabilities for all the datasets,
$p_i, i = N, An$
Select datapoints in a range $[p_{An}^{min}, p_{An}^{max}]$,
range optimized to select anomaly over normal events

Top and QCD Jets

the input dataset

SM $t\bar{t}$ and QCD diJet production, $\sqrt{s} = 13 \ TeV$

Madgraph + Pythia

Leading jet with $p_t > 750 \text{ GeV}$, R=1 Anti-kt jet

 $\Delta\eta=0.087, \Delta\phi=0.087$

Top Quark Decay

Averaged over 50,000 events

CNN for Top vs QCD Classification (2C Baseline Classification)

Related work

G.Kasieczka, T.Plehn, M.Russell and T.Schell, JHEP 05 (2017), 006 S.Macaluso and D.Shih, JHEP 10(2018), 121

BSM Benchmarks

Anomaly Awareness for 2C Data

We see the effect of adding awareness to the classification task

As we add more types of BSM examples, ALL BSMs gather in the centre Uniform Distribution over the baseline classes for all the BSM events

Robust Anomaly Detector

Baseline vs AA Comparison

The addition of the AA term does not degrade the baseline classification but adds the ability to use its output for anomaly detection

Signal Cross-section Reach

We scan on windows of the classifier output Cutting a small window around 0.5 anomaly detection is enhanced

We use S/\sqrt{B} as an example of quantity to maximise (S=BSM, B=SM)

Three-class Example

This procedure can be generalized beyond binary classification

Top Jet, QCD jet, W-jet

150 K images (balanced data set), training:test=70:30%

Prior Run

With AA

Unseen Data Set: EFT

Key Message

- All methods have their "advantages" and "limitations".
- No "Generic" method: Each method operates in a limited region of parameter space.
- "None" of the current methods are suitable for whole phase space and can not target the anomalous events of all types.
- Simulated benchmarks are also different, so it is "non-trivial" task to compare one with other.

LHC Olympics 2020 was organised to address this issue https://lhco2020.github.io/homepage/

SMEFTs

Model independent framework to parametrize the new physics Higher dimensional operators respecting SM symmetries and involving SM fields

$$\mathscr{L}^{d=6} = \mathscr{L}_{SM} + \sum_{i} \frac{C_i}{\Lambda^2} \mathcal{O}_i$$

SMEFT fit to Higgs, diboson and EW data

$$\begin{split} \mathcal{L}_{\mathrm{SMEFT}}^{\mathrm{SILH}} &\supset \frac{\bar{c}_W}{m_W^2} \frac{ig}{2} \left(H^{\dagger} \sigma^a \overset{\leftrightarrow}{D^{\mu}} H \right) D^{\nu} W_{\mu\nu}^a + \frac{\bar{c}_B}{m_W^2} \frac{ig'}{2} \left(H^{\dagger} \overset{\leftrightarrow}{D^{\mu}} H \right) \partial^{\nu} B_{\mu\nu} + \frac{\bar{c}_T}{v^2} \frac{1}{2} \left(H^{\dagger} \overset{\leftrightarrow}{D_{\mu}} H \right)^2 \\ &\quad + \frac{\bar{c}_U}{v^2} (\bar{L} \gamma_{\mu} L) (\bar{L} \gamma^{\mu} L) + \frac{\bar{c}_{He}}{v^2} (iH^{\dagger} \overset{\leftrightarrow}{D_{\mu}} H) (\bar{e}_R \gamma^{\mu} e_R) + \frac{\bar{c}_{Hu}}{v^2} (iH^{\dagger} \overset{\leftrightarrow}{D_{\mu}} H) (\bar{u}_R \gamma^{\mu} u_R) \\ &\quad + \frac{\bar{c}_{Hd}}{v^2} (iH^{\dagger} \overset{\leftrightarrow}{D_{\mu}} H) (\bar{d}_R \gamma^{\mu} d_R) + \frac{\bar{c}'_{Hq}}{v^2} (iH^{\dagger} \sigma^a \overset{\leftrightarrow}{D_{\mu}} H) (\bar{Q}_L \sigma^a \gamma^{\mu} Q_L) \\ &\quad + \frac{\bar{c}_{Hq}}{v^2} (iH^{\dagger} \overset{\leftrightarrow}{D_{\mu}} H) (\bar{Q}_L \gamma^{\mu} Q_L) + \frac{\bar{c}_{HW}}{m_W^2} ig (D^{\mu} H)^{\dagger} \sigma^a (D^{\nu} H) W_{\mu\nu}^a + \frac{\bar{c}_{HB}}{m_W^2} ig' (D^{\mu} H)^{\dagger} (D^{\nu} H) B_{\mu\nu} \\ &\quad + \frac{\bar{c}_{3W}}{m_W^2} g^3 \epsilon_{abc} W_{\mu}^{a\nu} W_{\nu\rho}^b W^{c\,\rho\mu} + \frac{\bar{c}_g}{m_W^2} g_s^2 |H|^2 G_{\mu\nu}^A G^{A\mu\nu} + \frac{\bar{c}_\gamma}{m_W^2} g'^2 |H|^2 B_{\mu\nu} B^{\mu\nu} \\ &\quad + \frac{\bar{c}_H}{v^2} \frac{1}{2} (\partial^{\mu} |H|^2)^2 + \sum_{f=e,u,d} \frac{\bar{c}_f}{v^2} y_f |H|^2 \bar{F}_L H^{(c)} f_R \\ &\quad + \frac{\bar{c}_{3G}}{m_W^2} g_s^3 f_{ABC} G_{\mu}^{A\nu} G_{\nu}^{A\rho} G_{\rho}^{C\mu} + \frac{\bar{c}_{uG}}{m_W^2} g_s y_u \bar{Q}_L H^{(c)} \sigma^{\mu\nu} \lambda_A u_R G_{\mu\nu}^A \end{split}$$

J.Ellis, C.W.Murphy, V.Sanz and T.You JHEP06(2018)146

SMEFT : Global Analysis

 Precision electroweak data, LHC Run 1 & 2 data (Higgs production, pair of gauge bosons)

Observable	Measurement	Ref.	SM Prediction	Ref.
$\Gamma_Z \; [\text{GeV}]$	2.4952 ± 0.0023	[41]	2.4943 ± 0.0005	[40]
$\sigma_{\rm had}^0 \; [{\rm nb}]$	41.540 ± 0.037	[41]	41.488 ± 0.006	[40]
R^0_ℓ	20.767 ± 0.025	[41]	20.752 ± 0.005	[40]
$A_{ m FB}^{0,\ell}$	0.0171 ± 0.0010	[41]	0.01622 ± 0.00009	[120]
$\mathcal{A}_{\ell}\left(P_{\tau}\right)$	0.1465 ± 0.0033	[41]	0.1470 ± 0.0004	[120]
$\mathcal{A}_{\ell}\left(\mathrm{SLD}\right)$	0.1513 ± 0.0021	[41]	0.1470 ± 0.0004	[120]
R_b^0	0.021629 ± 0.00066	[41]	0.2158 ± 0.00015	[40]
R_c^0	0.1721 ± 0.0030	[41]	0.17223 ± 0.00005	[40]
$A_{ m FB}^{0,b}$	0.0992 ± 0.0016	[41]	0.1031 ± 0.0003	[120
$A_{ m FB}^{0,c}$	0.0707 ± 0.0035	[41]	0.0736 ± 0.0002	[120
\mathcal{A}_b	0.923 ± 0.020	[41]	0.9347	[120]
\mathcal{A}_{c}	0.670 ± 0.027	[41]	0.6678 ± 0.0002	[120
M_W [GeV]	80.387 ± 0.016	[42]	80.361 ± 0.006	[120]
M_W [GeV]	80.370 ± 0.019	[100]	80.361 ± 0.006	[120

LEP data + WW LEP2 data + Mw Tevatron

J.Ellis, C.W.Murphy, V.Sanz and T.You JHEP06(2018)146

LHC data

Production	Decay	Signal Strength	Production	Decay	Signal Strength
$gg\mathrm{F}$	$\gamma\gamma$	$1.10\substack{+0.23\\-0.22}$	Wh	au au	-1.4 ± 1.4
$gg\mathrm{F}$	ZZ	$1.13\substack{+0.34\\-0.31}$	Wh	bb	1.0 ± 0.5
ggF	WW	0.84 ± 0.17	Zh	$\gamma\gamma$	$0.5^{+3.0}_{-2.5}$
ggF	au au	1.0 ± 0.6	Zh	WW	$5.9^{+2.6}_{-2.2}$
VBF	$\gamma\gamma$	1.3 ± 0.5	Zh	au au	$2.2^{+2.2}_{-1.8}$
VBF	ZZ	$0.1^{+1.1}_{-0.6}$	Zh	bb	0.4 ± 0.4
VBF	WW	1.2 ± 0.4	tth	$\gamma\gamma$	$2.2^{+1.6}_{-1.3}$
VBF	au au	1.3 ± 0.4	tth	WW	$5.0^{+1.8}_{-1.7}$
Wh	$\gamma\gamma$	$0.5^{+1.3}_{-1.2}$	tth	au au	$-1.9^{+3.7}_{-3.3}$
Wh	WW	$1.6^{+1.2}_{-1.0}$	tth	bb	1.1 ± 1.0
pp	$Z\gamma$	$2.7^{+4.6}_{-4.5}$	pp	$\mu\mu$	0.1 ± 2.5

Run 1 data

	Production	Decay	Sig. Stren.		Production	Decay	Sig. Stren.
[102]	1-jet, $p_T > 450$	$b\overline{b}$	$2.3^{+1.8}_{-1.6}$	[110]	pp	$\mu\mu$	-0.1 ± 1.5
[103]	Zh	$b\overline{b}$	0.9 ± 0.5	[111]	Zh	$b\overline{b}$	$1.12^{+0.50}_{-0.45}$
[103]	Wh	$b\overline{b}$	1.7 ± 0.7	[111]	Wh	$b\overline{b}$	$1.35^{+0.68}_{-0.59}$
[104]	$t\bar{t}h, \ge 1\ell$	$b\overline{b}$	0.72 ± 0.45	[112]	$t\bar{t}h$	$b\overline{b}$	$0.84^{+0.64}_{-0.61}$
[105]	$t\bar{t}h$	$1\ell + 2\tau_h$	$-1.52^{+1.76}_{-1.72}$	[113]	$t\bar{t}h$	$2\ell os + 1\tau_h$	$1.7^{+2.1}_{-1.9}$
[105]	$t\bar{t}h$	$2\ell ss + 1\tau_h$	$0.94\substack{+0.80\\-0.67}$	[113]	$t\bar{t}h$	$1\ell + 2\tau_h$	$-0.6^{+1.6}_{-1.5}$
[105]	$t\bar{t}h$	$3\ell + 1\tau_h$	$1.34^{+1.42}_{-1.07}$	[113]	$t\bar{t}h$	$3\ell + 1\tau_h$	$1.6^{+1.8}_{-1.3}$
[105]	$t\bar{t}h$	$2\ell ss$	$1.61\substack{+0.58\\-0.51}$	[113]	$t\bar{t}h$	$2\ell ss + 1\tau_h$	$3.5^{+1.7}_{-1.3}$
[105]	$t\bar{t}h$	3ℓ	$0.82^{+0.77}_{-0.71}$	[113]	$t\bar{t}h$	3ℓ	$1.8^{+0.9}_{-0.7}$
[105]	$t\bar{t}h$	4ℓ	$0.9^{+2.3}_{-1.6}$	[113]	$t\bar{t}h$	$2\ell ss$	$1.5^{+0.7}_{-0.6}$
[106]	0-jet DF	WW	$1.30\substack{+0.24\\-0.23}$	[114]	$gg\mathrm{F}$	WW	$1.21\substack{+0.22\\-0.21}$
[106]	1-jet DF	WW	$1.29^{+0.32}_{-0.27}$	[114]	VBF	WW	$0.62^{+0.37}_{-0.36}$
[106]	2-jet DF	WW	$0.82^{+0.54}_{-0.50}$	[115]	${ m B}(h o \gamma \gamma)/ \ { m B}(h$	$\rightarrow 4\ell$)	$0.69\substack{+0.15\\-0.13}$
[106]	VBF 2-jet	WW	$0.72\substack{+0.44 \\ -0.41}$	[115]	0-jet	4ℓ	$1.07\substack{+0.27 \\ -0.25}$
[106]	Vh 2-jet	WW	$3.92^{+1.32}_{-1.17}$	[115]	1-jet, $p_T < 60$	4ℓ	$0.67\substack{+0.72 \\ -0.68}$
[106]	Wh 3-lep	WW	$2.23^{+1.76}_{-1.53}$	[115]	1-jet, $p_T \in (60, 120)$	4ℓ	$1.00\substack{+0.63\\-0.55}$
[107]	$gg\mathrm{F}$	$\gamma\gamma$	$1.10\substack{+0.20 \\ -0.18}$	[115]	1-jet, $p_T \in (120, 200)$	4ℓ	$2.1^{+1.5}_{-1.3}$
[107]	VBF	$\gamma\gamma$	$0.8^{+0.6}_{-0.5}$	[115]	2-jet	4ℓ	$2.2^{+1.1}_{-1.0}$
[107]	$t\bar{t}h$	$\gamma\gamma$	$2.2^{+0.9}_{-0.8}$	[115]	"BSM-like"	4ℓ	$2.3^{+1.2}_{-1.0}$
[107]	Vh	$\gamma\gamma$	$2.4^{+1.1}_{-1.0}$	[115]	VBF, $p_T < 200$	4ℓ	$2.14_{-0.77}^{+0.94}$
[108]	$gg\mathrm{F}$	4ℓ	$1.20\substack{+0.22\\-0.21}$	[115]	$Vh \ \mathrm{lep}$	4ℓ	$0.3^{+1.3}_{-1.2}$
[109]	0-jet	au au	0.84 ± 0.89	[115]	$t\bar{t}h$	4ℓ	$0.51^{+0.86}_{-0.70}$
[109]	boosted	au au	$1.17\substack{+0.47\\-0.40}$	[116]	Wh	WW	$3.2^{+4.4}_{-4.2}$
[109]	VBF	au au	$1.11\substack{+0.34\\-0.35}$				
[106]	Zh 4-lep	WW	$0.77^{+1.49}_{-1.20}$				

(Early) Run 2 data + STXS

J.Ellis, C.W.Murphy, V.Sanz and T.You JHEP06(2018)146

A.Biekötter, T.Corbett and T.Plehn, arXiv:1812.07587 [hep-ph] E.da Silva Almeida et al.,Phys.Rev.D 99(2019)

Why VH channel?

VBF channel

J. Brehmer, K. Cranmer, G. Louppe and J Pavez, Phys. Rev. Lett. 121 (2018) 111801, Phys. Rev. D 98 (2018) 052004

VH channel (higher statistics)

Felipe F. Freitas, CKK, Veronica Sanz, arXiv: 1902.05803 [hep-ph]

SMEFT via VH channel

Specific operator which produces it

Felipe F. Freitas, CKK, Veronica Sanz, arXiv: 1902.05803 [hep-ph]

NN.

 V_{ν}

Analysis set-up (VH Channel)

 $p_T^{b_1}, p_T^{b_2}, p_T^{VH}, M_T^{VH}, p_T^{W/Z}, p_T^H, \eta^H, \phi^H$

0-lepton	$pp \rightarrow HZ, (H \rightarrow b\bar{b}, Z \rightarrow \nu\bar{\nu})$	$MET, \Delta \phi_{b_1 MET}$
1-lepton	$pp \rightarrow HW, (H \rightarrow b\bar{b}, W \rightarrow lv_l)$	$M_T^W, p_T^l, MET, \Delta R_{wl}, \Delta \phi_{b_1l}, \Delta \phi_{lMET}$
2-lepton	$pp \to HZ, (H \to b\bar{b}, Z \to l^+l^-)$	$p_T^{l_1}, p_T^{l_2}, \Delta R_{ll}, \Delta \phi_{b_1 l_1}, \Delta \phi_{b_2 l_1}$

Feynrules Model : Higgs Effective Lagrangian arXiv:1310.5150

 $\sqrt{s} = 14$ TeV, 100K events for both SMEFT and SM using MC@NLO Madgraph

LO, parton level analysis

Channel	Inclusive
0L	$E_T > 150 \text{ GeV}$
1L	$p_T^l > 25 \text{ GeV}, \eta_l < 2.7$
	$E_T > 30 \text{ GeV}, p_T^V > 150 \text{ GeV}$
2L	$ p_T^l > 7 \text{ GeV}, \eta_l < 2.7, p_T^V > 75 \text{ GeV}$
	Leading lepton $p_T > 27 \text{ GeV}$
0L, 1L, 2L	$p_T^b > 20 \text{ GeV}, \eta_b < 2.5,$
	Leading b-jet $p_T > 45 \text{ GeV}$

M. Aaboud et al., Phys. Lett. B 786(2018) 59

Felipe F. Freitas, CKK, Veronica Sanz, arXiv: 1902.05803 [hep-ph]

1D and 2D features

Neural Network

Neural Network Architecture

- Training set: Test set = 70 %: 30% (data scaling)
- Hidden layers: 1 (optimised)
- Activation function: ReLu
- Dropouts: 0.2
- Loss function: Asimov loss function (pre-training with MSE)

ROC curve (SMEFT vs SM Higgs background)

AUC: area under ROC

Appropriate performance measure for HEP analysis

Asimov Significance

$$Z_A = \left[2 \left((s+b) \ln \left[\frac{(s+b)(b+\sigma_b^2)}{b^2+(s+b)\sigma_b^2} \right] - \frac{b^2}{\sigma_b^2} \ln \left[1 + \frac{\sigma_b^2 s}{b(b+\sigma_b^2)} \right] \right) \right]^{1/2}$$
$$s = W_s \sum_{i}^{N_{batch}} y_i^{pred} \times y_i^{true} \qquad b = W_b \sum_{i}^{N_{batch}} y_i^{pred} \times (1 - y_i^{true})$$

Specific(Asimov) Loss function

$$\ell_{Asimov} = 1/Z_A$$

Adam Elwood and Dirk Krücker, arXiv: 1806.00322[hep-ex]

Glen Cowan, Kyle Cranmer, Eilam Gross, Ofer Vitells, arXiv:1007.1727[physics.data-an]

Classifier Output : OL channel $(C_{HW} = 0.03)$

Current limit at 95% CL

Irreducible background only

Combining 0L+1L+2L for a limiting case

Irreducible background only

For a realistic analysis combining different channels may help

Summary and Outlook

- ML techniques are emerging as a competitive tool to look for new phenomena in the complex data
- HEP community is adapting these techniques for various tasks: trigger, heavy flavour tag, quark gluon discrimination, jet tagging etc.
- There is lot of activity to build methods for anomaly detection.
- We present a new algorithm for anomaly detection. It is based on the procedure of classifying 'normal' (SM) events, While the algorithm is made aware of the presence of anomalies (BSM) through a modification of the learning function.
- We used supervised learning techniques to exploit kinematic information in VH channel for SMEFT framework. This approach may provide a significant stronger bounds on EFT coefficients (scalability for more operators, realistic simulation).
- Finally, we need to test/use these approaches for LHC data.

Thanks

Generative Adversarial Networks (GANs)

Can interpolate the phase space for the event generation

Aim is to see if GANs could be used for fast simulations (dijetGAN, arxiv:1903.02433)