

LHCb VeloPixel fast simulation

Serena Maccolini, Angelo Carbone, Tommaso Fulghesu TIMESPOT meeting - WP4

12 October 2020

Lots of inputs

- From WP4 meeting:
 - Different % of pixels hit by 2 particles in Run3 and Run5 (from beam conditions) 🗸
 - Test clustering with and without timing
 - Add info for Long tracks and tracks with Nhit >= 4 ✓
 - Performance with no secondaries <
- From VeloU2 and VeloFastSim meetings:
 - Check #PVs for Run3 (it's ok) ✓
 - Switch to BeamSpotGenerator (Stefano's code is equivalent) ✔
 - Estimate cluster time resolution
 - Check v=c ansatz ✓
 - Performance with no secondaries <
 - new tracking algorithm
- Others:
 - send input to Marco (still waiting for info)
 - send code to Mickail for a realistic input
 - implement clustering with rawbanks on FPGA (instruction from GBalbi)

Performance FoM

- Velo particle = 2 < eta < 5 and is not an electron
- Long particle = Velo forward particle with
 12 < |px/pz| < 300 mrad and 12 < |py/pz| < 250 mrad

- Efficiency = # of reconstructed particles / # of reconstructible particles
- Ghost rate = # of non-assigned tracks / # of reconstructed tracks
- Reconstructible = at least 3 or 4 hits in the geometry

Upgrade-II performances

	3hits			4hits		
	εVELO(%)	εLONG(%)	PGHOST(%)	εVELO(%)	εLONG(%)	PGHOST(%)
$\sigma_t = 10 \text{ ps}$	97.5	97.1	0.23	98.5	98.2	0.14
$\sigma_t = 20 \text{ ps}$	97.9	97.6	0.32	98.9	98.7	0.17
$\sigma_t = 30 \text{ ps}$	98.0	97.8	0.42	99.0	98.9	0.20
$\sigma_t = 40 \text{ ps}$	98.1	97.8	0.56	99.0	98.9	0.24
$\sigma_t = 50 \text{ ps}$	98.1	97.8	0.72	99.0	99.0	0.28
$\sigma_t = 60 \text{ ps}$	98.0	97.9	0.90	99.0	99.0	0.33
No Timing	97.8	97.7	4.20	98.7	98.9	1.32

Upgrade-II performances

Only prompt

	3hits			4hits		
	εVELO(%)	εLONG(%)	PGHOST(%)	εVELO(%)	εLONG(%)	PGHOST(%)
$\sigma_t = 10 \text{ ps}$	98.9	98.8	0.1	99.2	99.1	0.0
$\sigma_t = 20 \text{ ps}$	99.2	99.1	0.1	99.5	99.4	0.0
$\sigma_t = 30 \text{ ps}$	99.3	99.2	0.2	99.5	99.5	0.1
$\sigma_t = 40 \text{ ps}$	99.3	99.3	0.3	99.6	99.6	0.1
$\sigma_t = 50 \text{ ps}$	99.3	99.3	0.4	99.6	99.6	0.1
$\sigma_t = 60 \text{ ps}$	99.3	99.3	0.5	99.5	99.6	0.1
No Timing	99.2	99.2	2.9	99.5	99.5	0.5

For the next meetings

- Better understanding of Multiple Scattering effects (check on FullSim)
- Implement/check what discussed in meetings
- Moreover:
 - First document for FastSim
 - Release first version of FastSim (almost ready)

Impact of Layers MS non-negligible

- Previous simulation of RF foil Multiple Scattering failed in describing IPx resolution and performances.
- From Laurent slides:

The impact of the Layers material is non-negligible.

Introducing Multiple Scattering from RF foil and Layers

RF foil as a cylinder of:

R = 5 mmwidth = 350 μ m material = Al

Layers:800 µm of Si

 Momentum scattering is applied to all the particles (in geometrical acceptance) following PDG instructions

$$\begin{aligned} y_{\text{plane}} = & z_1 \, x \, \theta_0 (1 - \rho_{y\theta}^2)^{1/2} / \sqrt{3} + z_2 \, \rho_{y\theta} x \, \theta_0 / \sqrt{3} \\ = & z_1 \, x \, \theta_0 / \sqrt{12} + z_2 \, x \, \theta_0 / 2; \\ \theta_{\text{plane}} = & z_2 \, \theta_0. \end{aligned}$$

IP_x resolution vs 1/p_T

$$\begin{split} \sigma_{IP}^2 &= \frac{r_1^2}{p_T} \left(0.0136 \, \text{GeV/}c \, \sqrt{\frac{x}{X_0}} \left(1 + 0.038 \ln \frac{x}{X_0} \right) \right)^2 + \left(\frac{\Delta_{02}^2 \sigma_1^2 \Delta_{01}^2 \sigma_2^2}{\Delta_{12}^2} \right) \\ &= \sigma_{MS}^2 + \sigma_{extrap}^2. \end{split}$$

Validation plots (Upgrade-I)

Charge deposit

Validation plots (Upgrade-I)

Efficiency

Validation plots (Upgrade-I)

Ghost rate

Integrated values

Comparison with FullSim and Laurent U2 talk

	Run3			
	εVELO(%)	PGHOST(%)		
FastSim withMS	98.0	0.5		
FullSim	97.8	0.44		
150µm Foil [Laurent U2 talk]	98.1	0.5		

Performances

Efficiency

Performances

Ghost rate

Upgrade-II performances

with Multiple Scattering

	3hits			4hits		
	εVELO(%)	εLONG(%)	PGHOST(%)	εVELO(%)	εLONG(%)	PGHOST(%)
$\sigma_t = 10 \text{ ps}$	96.6	95.8	0.2	98.1	97.7	<0.1
$\sigma_t = 20 \text{ ps}$	97.1	96.4	0.3	98.4	98.1	0.1
$\sigma_t = 30 \text{ ps}$	97.3	96.7	0.5	98.5	98.2	0.1
$\sigma_t = 40 \text{ ps}$	97.4	96.9	0.7	98.6	98.3	0.1
$\sigma_t = 50 \text{ ps}$	97.5	97.0	0.9	98.6	98.3	0.2
$\sigma_t = 60 \text{ ps}$	97.5	97.0	1.2	98.6	98.3	0.2
No Timing	96.9	96.9	5.1	98.0	98.2	1.6

Matching with Laurent plot (WIP)

Different sample of tracks used, i.e. different 1/pT distribution...
 Ongoing flux of emails...

VPfast and next steps

- Status of the public code: <u>https://gitlab.cern.ch/acarbone/vpfastsim</u>
 - Validated for no MS and with T
 - To be fixed with MS and with T
 - if you want to add sensor efficiency

- Use/check input from Benedetto with different geometries (within a few days)
- Clustering with and without timing
- Study clustering algorithm done so far with raw banks and how to implement on FPGA
- ——> results to be presented to next Velo U2 meeting
- Implement clustering with rawbanks (from VPFast) on FPGA (instruction from GBalbi)