Raw Banks SuperPixel Logic

Angelo Carbone, Serena Maccolini, Tommaso Fulghesu

Bologna

October 25, 2020

SuperPixel

Figure: SuperPixel format

- 8 neighbouring pixels
- Orientation depends on the Sensor to which it belongs to
- First clustering techniques
- FPGA-friendly using Raw Bank

Raw Bank

A raw bank contains information relative to each hit SuperPixel of a Sensor (192 \times 128 SP)

Figure: Raw bank format

SP word

Each raw bank is composed by a 36-bit word

|--|

- 1 bits for the "hint"
- 12 bits for the SP time information (25ns sampling, 6ps time resolution)
- 8 and 7 bits for SP spatial position
- 8 bits for px inside SP

SP Time distribution

Time coordinate associated to a superpixel is $O(ns) \rightarrow 10$ bits

Figure: Time associated to a superpixel wrt event time

SP time assumption

The time associated to each pixel is given by two terms:

$$t_{px} = t_{ov} + \frac{1}{v_{part}} * |z_{px} - z_{ov}| * \frac{p}{p_z}$$

Assumption: $t_{SP} = t_{px_{first}}$

TEST: RMSE for each SP

RESULT: Few number of SPs with more than 1 hit pixels have RMSE \neq 0 (264 entries vs 74886 SP)

Figure: RMSE≠ 0 associated to a superpixel with more than one ON pixel

Next steps

- Test directly with FPGA;
- Build raw bank even using pixel logic;
- Clustering algorithms based on the SP.

FPGA Clustering

WHY?

Large amount of clusters are inside an isolated SP \rightarrow It is possible to use a look-up table (from 0 to 255) to see the active pixels inside the SP and creates the clusters (2x faster)

FPGA Clustering

HOW IT WORKS?

STEP 1: Matrices with dimension 5 \times 3 SPs (10 \times 12 pixels) at every clock cycle change SP input.

FPGA Clustering

HOW IT WORKS?

STEP 2: Construction of cluster candidate from the **SEED** pixel.

TOPOLOGY

To every seed pixel is associated a lookup table with *flags* which characterize the cluster

Meaning	Flag
Isolated	101
Overflow	100
Self-contained & edge	011
Self-contained & not-edge	010
Not-self-contained & edge	001
Not-self-contained & not-edge	000

Clustering efficiency

$$\epsilon = \frac{N_{MC_{linked}}}{N_{MC}}$$

 $N_{MC|linked} = \#$ hits with linked reconstructed cluster. $N_{MC} = \#$ reconstructible hits

Cluster Inefficiency

FPGA efficiency depends on VELO occupancy

- larger prob. of non isolated SPs and larger cluster dimensions
- larger prob. of overflow