

INFN - Laboratori Nazionali di Frascati ummary of the Rate Bandle Decay Session INFN

Summary of the Rare B and C Decay Session HQL₁₀

B. Cox University of Virginia

Rare B Decays is very active topic

 $10^6 \, \text{hb} \rightarrow 10^9 \, \text{hb} \rightarrow 10^{11-12} \, \text{hb}$ Past Present Future

Will upper limits change to measurements by HQL12?

10/15/10

INFN - Laboratori Nazionali di Frascati 11th-15th October, 2010

One Theory Overview Talk Gino Isidori

Seven Experimental Talks

Present: Babar C. Jessop $B \rightarrow K \nu \nu$, $B \rightarrow K^+ \tau \tau$, $B \rightarrow \gamma \gamma$, $B \rightarrow X_d \gamma$ (V_{td}/V_{ts})

CDF1 M. Resigni $B_s \rightarrow J/\Psi K_s$, $B_s \rightarrow J/\Psi K^*(890)$, $B_s \rightarrow \phi \phi$ (pol.)

CDF2 S. Farrington $B_{s,d} \rightarrow \mu\mu$, $B_{s,d} \rightarrow K^*\mu\mu$, $B_s \rightarrow \phi\mu\mu$, $B^+ \rightarrow K^+\mu\mu$, $D \rightarrow \mu\mu$

DO I. Rigg-Baudot $B_s \rightarrow \mu\mu$

Atlas V. Sipica $B_s \rightarrow \mu\mu$ plus $b \rightarrow s\mu\mu$ transition prospects

Future: CMS L. Martini $B_s \rightarrow \mu\mu$ prospects

LHCb N. Tuning $B_s \rightarrow \mu\mu$, $B^0 \rightarrow K^*\mu\mu$, $B^0 \rightarrow K^*\gamma$, $B_s B^0 \rightarrow \phi\gamma$ prospects

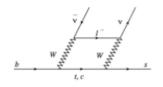
INFN - Laboratori Nazionali di Frascati 11th-15th October, 2010

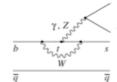
Isidori Conclusions

- No large new sources of flavor symmetry breaking at the TeV scale.
- Several anomalies in the CKM picture are starting to show up.

		SM pred.	data	pull
→ The $A_{\psi K}$ - sin(2β) tension	$A_{\psi K}$.771 ± .036	.654 ± .026	2.7σ
→ CPV in Bs mixing	$\phi_s = -2 \beta_s $	$.038 \pm .003$	$\sim 0.7 \pm 0.3$	~ 2 σ
* $B \rightarrow \tau \nu$	$10^4\mathrm{B}(\mathrm{B}{ ightarrow} au au)$	0.81 ± 0.07	1.72 ± 0.28	3.2σ

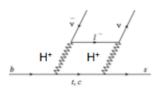
- May well be the first signals of new physics at the TeV scale.
- Rare decays are the key tool to make progress in this field.
- Clean leptonic and semileptonic B decays are those with the largest discovery potential in most realistic NP models

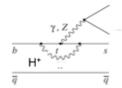



INFN - Laboratori Nazionali di Frascati 11th-15th October, 2010

Search for $B \to K \nu \bar{\nu}$

Standard Model



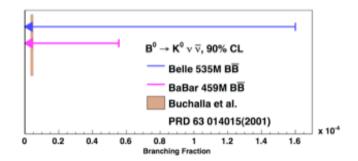


 $B(B^0 \to K \nu \bar{\nu}) \sim 3.2-5.2 \times 10^{-6}$

Altmannshofer,Buras,Straub,Wick JHEP 0904, 02 (2009) Buchalla,Hiller,Isidori 63 014015 (2000)

Physics Beyond Standard Model

 $B(B^0 \to K \nu \overline{\nu}) \sim O(10^{-5})$


(MSSM,unparticles,extra dimensions) Yamada PRD 77 014025,Aliev etal JHEP 070 .072 Colangeo etal PRD 73 115006

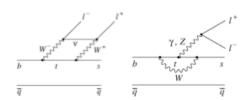
Previous Measurements

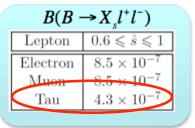
Experiment	BF (90% CL)	Dataset	Reference
Belle	< 1.4 x 10 ⁻⁵	492 fb ⁻¹	Chen etal PRL 99 221802, 2007
BaBar	< 5.2 x 10 ⁻⁵	82 fb ⁻¹	Aubert et al. 94 1018011

BaBar B+,0→Kvv

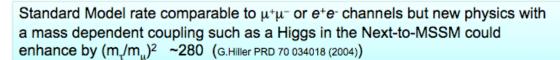
Mode	$\mathcal{B} \times 10^{-5}$	90% CL	95% CL
K^+	$0.2^{+0.8}_{-0.7}$	< 1.3	< 1.6
K_s^0	$1.7^{+3.1}_{-2.1}$	< 5.6	< 6.7
Comb. K^+, K_s^0	$0.5^{+0.7}_{-0.7}$	< 1.4	< 1.7
$low-q^2$	$0.2^{+0.6}_{-0.5}$	< 0.9	< 1.1
$high-q^2$	$-1.8^{+3.8}_{-3.8}$	< 3.1	< 4.6

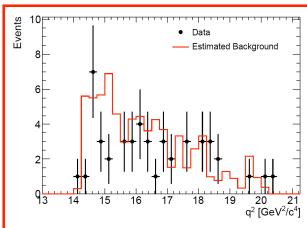
5


INFN - Laboratori Nazionali di Frascati 11th-15th October, 2010


9

Search for $B^+ \to K^+\tau^+\tau^-$


Standard Model



 $B^+ \rightarrow K^+ \tau^+ \tau^- \sim 50\%$ of total inclusive rate

J. Hewett, PRD 53:4964 (1996) $X_s e^+e^ x_s = q^2/m_b^2$ $x_s = q^2/m_b^2$

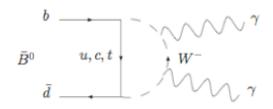
BaBar B⁺→K⁺ττ

$$B (B^+ \to K^+ \tau^+ \tau) < 0.0033 (90\% CL)$$

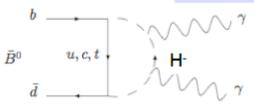
(First limit to date)

Colin Jessop at Heavy Quarks and Leptons NOTRE DAME

10/15/10 5



INFN - Laboratori Nazionali di Frascati 11th-15th October, 2010

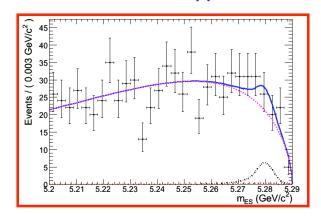

Search for $B^0 \rightarrow \gamma \gamma$

Standard Model

$$B(B^0 \to \gamma \gamma) \sim 3 \times 10^{-8}$$

(Bosch and Buchalla, JHEP 0208:054 (2002))

Physics Beyond Standard Model

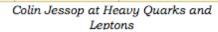

 $B(B^0 \rightarrow \gamma \gamma) \sim O(10^{-7})$ Aliev and Turin, PRD 58 095014 (2HDM models or R-parity violating SUSY)

Experimental constraints from b→dy experiment

Previous Measurements

Experiment	BF (90% CL)	Dataset	Reference
L3	< 1.9 x 10 ⁻⁵	2.95x10 ⁶ (Z→had)	Acciarri et al. Phys. Lett. B, 363, 1995
BaBar	< 1.7 x 10 ⁻⁶	19 fb ⁻¹	Aubert et al. PRL 87, 24, 2001
Belle	< 6.1 x 10 ⁻⁷	104 fb ⁻¹	Villa et al. PRD 73, 2006

BaBar B⁰ →γγ

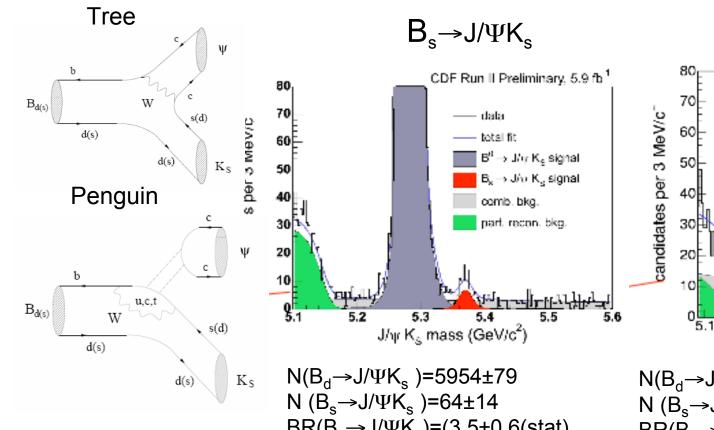


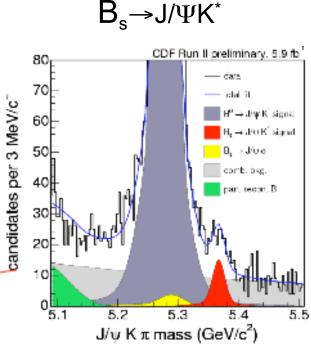
 $BR(B^0 \to \gamma \gamma) < 3.3 \times 10^{-7}$

BR(B⁰ $\rightarrow \gamma \gamma$)=(1.7±1.1(stat) ±0.2(sys))x 10⁻⁷)

1.9 sigma significance

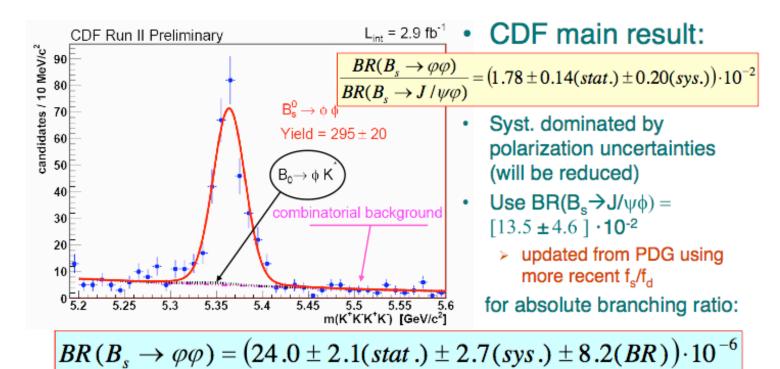
6




INFN - Laboratori Nazionali di Frascati 11th-15th October, 2010

CDF

BR(B_s \rightarrow J/ Ψ K_s)=(3.5±0.6(stat) 10/15/10 ± 0.4 (sys) ± 0.4 (frag) ± 0.1 (PDG)x10⁻⁵


 $N(B_d \rightarrow J/\Psi K^*) = 9540 \pm 110$ N (B_s→J/ΨK*)=158±25 $BR(B_s \to J/\Psi K^*) = (8.3 \pm 1.2 (stat))$ ±3.3(sys)±1.0(frag)±0.4(PDG)x10⁻⁵

INFN - Laboratori Nazionali di Frascati 11th-15th October, 2010

CDF

INFN - Laboratori Nazionali di Frascati 11th-15th October, 2010

CDF

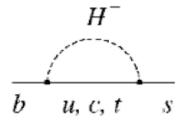
 $B_s \rightarrow \phi \phi$ polarization

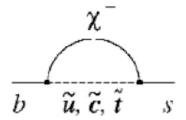
- In B→VV decays 3 decay product relative angular momentum states possible:
 - > 3 independent decay amplitudes
 - Best decomposed in a longitudinal and two transverse polarization amplitudes A₀,A₁(CP even), A₁(CP odd)
- Naïve expectation: |A₀|>>|A₁|~|A₁|
 - > V-A nature of weak interaction and conservation helicity in gcd

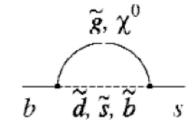
$$|A_0|^2 = 0.348 \pm 0.041(\text{stat}) \pm 0.021(\text{syst})$$

 $|A_{\parallel}|^2 = 0.287 \pm 0.043(\text{stat}) \pm 0.011(\text{syst})$
 $|A_{\perp}|^2 = 0.365 \pm 0.044(\text{stat}) \pm 0.027(\text{syst})$

Obviously violated: Penguin effects favored over FSI new physics?


INFN - Laboratori Nazionali di Frascati 11th-15th October, 2010




CDF

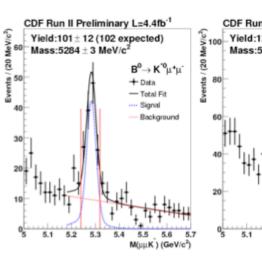
 $B_{s,d} \rightarrow K^* \mu \mu$, $B_{s,} \rightarrow \phi \mu \mu$, $B^+ \rightarrow K^+ \mu \mu$ new physics

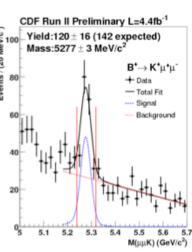
- B Rare Decays B → μ⁺μ⁻ h :
 - B⁺ → μμ K⁺ } observed at Babar, Belle, CDF
 - $B_s \rightarrow \mu\mu\phi$ } not seen until now
- FCNC b → sy*
- Penguin or box processes in the Standard Model:

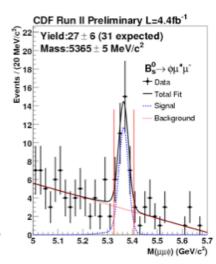
PRL103:171801,2009

PRD 79:011104,2009

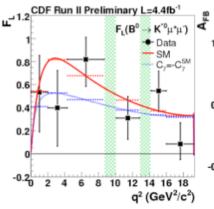
Predicted BR(B_s $\rightarrow \mu\mu \phi$)=1.61x10⁻⁶

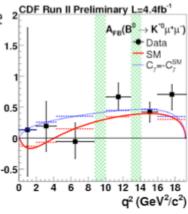

hep-ph/0303246

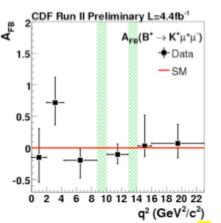



INFN - Laboratori Nazionali di Frascati 11th-15th October, 2010

Candidate invariant mass distributions






CDF

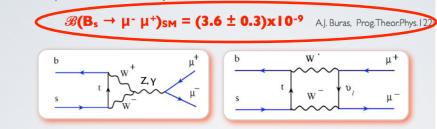
$$B_{s,d} \rightarrow K^* \mu \mu,$$

 $B_{s,} \rightarrow \phi \mu \mu,$
 $B^+ \rightarrow K^+ \mu \mu$

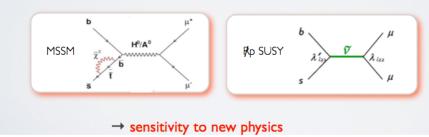
Forward backward asymmetry

B →hµµ First Observation In the B_s Mode

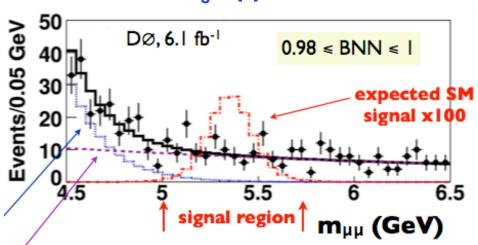
First Measurement
Of Asymmetries
At Hadron Collider



INFN - Laboratori Nazionali di Frascati 11th-15th October, 2010

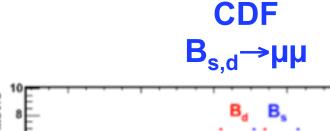


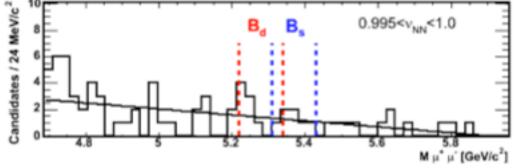
$$B_s \rightarrow \mu^+\mu^-$$


• FCNC processes have very low rate in SM and are well understood:

whereas many Beyond SM theories predict enhancements.

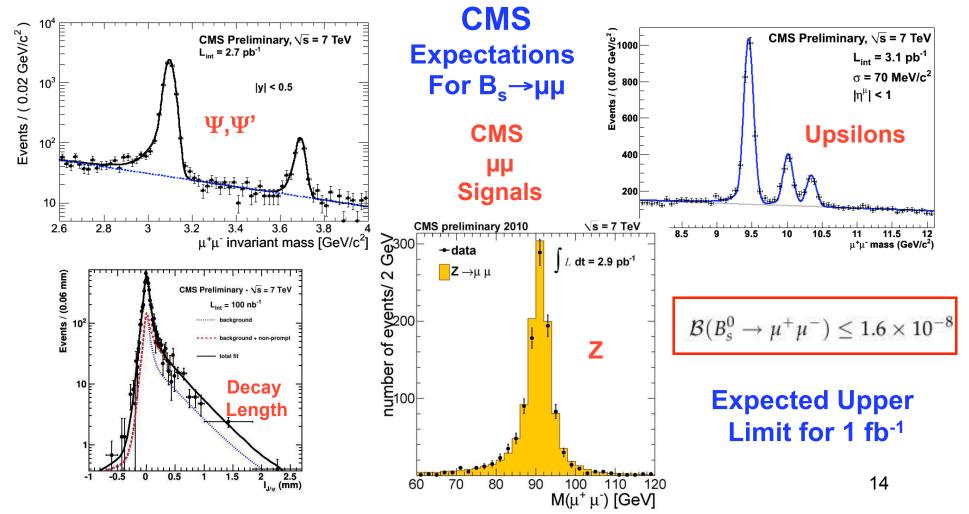
D0 B_s→µµ


D0 Result


$$\mathcal{B}(\mathbf{B_s} \to \mu^- \mu^+) < 5.1 \times 10^{-8}$$

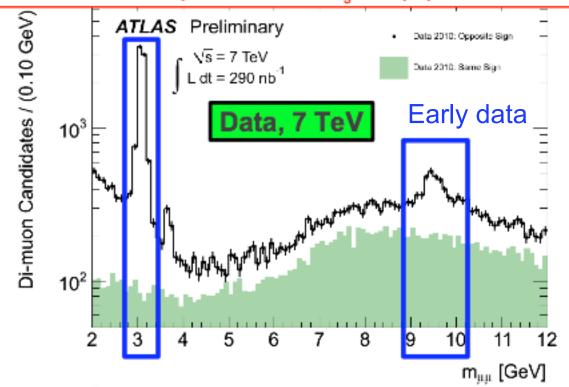
(CDF: BR < 4.3 x 10⁻⁸) ₁₂

INFN - Laboratori Nazionali di Frascati 11th-15th October, 2010


μμ Mass Spectrum (neural net parameter >0.995)

BR(B_s
$$\rightarrow$$
μμ) < $\begin{cases} 4.3 \times 10^{-8} @ 95\% \text{ CL} \\ 3.6 & 90 \end{cases}$
BR(B_d \rightarrow μμ) < $\begin{cases} 7.6 \times 10^{-9} @ 95\% \text{ CL} \\ 6.0 & 90 \end{cases}$

INFN - Laboratori Nazionali di Frascati 11th-15th October, 2010



INFN - Laboratori Nazionali di Frascati 11th-15th October, 2010

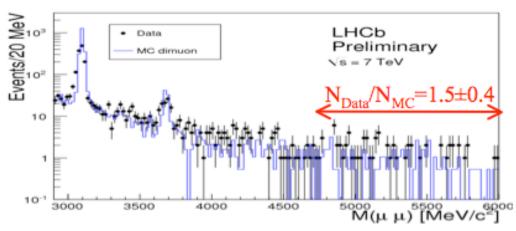
Atlas Expectations for B_s→µµ

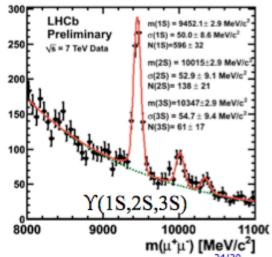
Selection not optimised for $B_s^0 \to \mu^+\mu^-$ searches

Expected events for 10 fb⁻¹:

- 5.7 signal
- 14 background

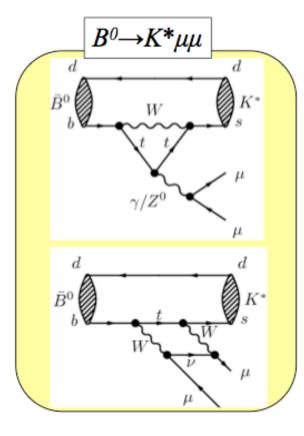
INFN - Laboratori Nazionali di Frascati 11th-15th October, 2010



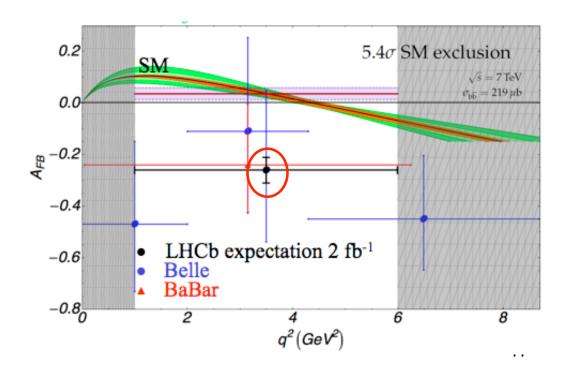

LHCb

Expectations for

Early Data

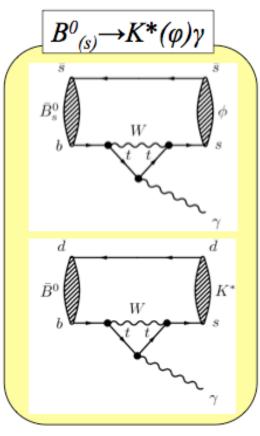

► With 50 pb⁻¹ possibly already approach new limit $BR(B^0_s \rightarrow \mu\mu) > 3.4 \times 10^{-8}$ @ 90%CL

 \triangleright With 1 fb⁻¹ possible to claim NP at 5σ if BR ~ 5 × BR_{SM}: BR(B⁰_s→μμ)>1.7×10⁻⁸



INFN - Laboratori Nazionali di Frascati 11th-15th October, 2010

LHCb
B_s→K*µµ Prospects
For F/B Asymmetry Measurement



10/15/10

INFN - Laboratori Nazionali di Frascati 11th-15th October, 2010

LHCb Expectations for $B_s \rightarrow K^* \gamma$, $B_s \rightarrow \phi \gamma$

Branching Ratio constrains NP models

- BR_{theory} $(B^0 \rightarrow X_s \gamma) = 3.15 \pm 0.23 \times 10^{-4}$ Belle, PRL, 103: 241801,2009
- $BR_{\exp}(B^0 \to X_s \gamma) = 3.56 \pm 0.26 \times 10^{-4} \text{ M. Misiak, PRL, 98:022002,2007}$
- Polarization of photon can still reveal large NP effects

INFN - Laboratori Nazionali di Frascati 11th-15th October, 2010

In Conclusion

- A rich set of rare B decay data available at present.
- Present rare B decay data nibbles around the edges of New Physics, within a factor of ~10-15 of the SM expectation for B_s→μμ.
 (More to come from Babar, Belle, CDF, and Dzero. Factor of 2 for CDF.D0)
- The new data is beginning to come out from the LHC experiments
- At integrated L=10 pb⁻¹ beautiful plots of SM signals, Ψ , Ψ ', Upsilonium, etc.
- Atlas, CMS and LHCb will get within a factor of 3-4 of SM expectations for B_s→µµ in the first run (1 fb⁻¹) but probably will not challenge them until the second run depending on the LHC luminosity and energy.
- Much better feeling than from HQ08. There is something more than SM. What will we have by HQL12? Measurements rather than upper limits?

10/15/10

INFN - Laboratori Nazionali di Frascati 11th-15th October, 2010

Babar B→Kvv

 $B \rightarrow K^+ \tau \tau$

В→үү

CDF $B_s \rightarrow J/\Psi K_s$

 $B_s \rightarrow J/\Psi K^*(890)$

 $B_s \rightarrow \phi \phi$

 $B_{s,d} \rightarrow \mu\mu$

DO B_s→µµ

Atlas B_s→µµ

CMS B_s→µµ

LHCb $B_s \rightarrow \mu\mu$,

B⁰→K*µµ

 $B^0 \rightarrow K^* \gamma$