Summary of Top Quark Session at HQL2010

J. Butler, Session Convener Fermilab

Thanks to the Five Speakers

for their excellent talks!

Aspects of Top Physics

- Top as an elementary particle of the Standard Model
- Top properties as a potential indicator of new physics
- Top as a decay product of new physics

For new experiments such as CMS and ATLAS, a "standard" candle with known properties with which to "commission" basic "analysis objects":

1) b tagging (b jets) 2) Missing Et

Top Quark Pair Production via Strong Interaction

- CDF, D0 results based on 4-6 fb⁻¹
- Strong production of Top pairs
 - CDF: Dileptons; leptons+jets; MET + b jets
 - D0 : Toplogical; dilepton; b-tag
 - Also, dσ/dp_T
- Cross section for pair production
 - ~7.5 pb
 - Error ~ 6%

Single Top Production by Electroweak Interaction

- Electroweak Production of single top
 - Signal Lepton plus small number of jets
 - Main background is W plus small number of jets
 - Cross section ~2.8 pb
 - Not small compared to pair production but backgrounds are larger
 - Uncertainty~20%
 - D0 separates t-channel diagram from s-channel
 - Number of jets, kinematics
- V_{tb} is a fundamental constant of nature
 - Expected to be very nearly 1 in SM
 - Single top cross section ~| V_{tb} |².
 - V_{tb} = 0.91 $\,\pm\,$ 0.9 , consistent with 1.0
 - Uncertainty is ~ 10%

Top Quark Mass and Width

- Mass is obtained from Leptons +jets and dileptons
 - CDF: mtop=173.0±0.7(stat)±0.6(JES) ±0.9 (syst) GeV
 - Best individual top mass measurement in the world to date, based on 5.6 fb⁻¹.
 - Tevatron July 2010 combination:
 - M_{top} = 173.3 ±1.1 (total) GeV/c² Δ M/M ~ 0.61 %
- Width
 - CDF: reconstruct mass event-by-event
 - Ftop< 7.5 GeV@ 95% C.L.
 - D0: Single top t-channel amplitude
 - $\Gamma_{top} = 1.99^{+0.69}_{-0.55}$ Gev vs $\Gamma_{top}^{SM} = 1.3$ GeV
- Mt Mtbar
 - CDF: Leptons + jets vs lepton charge
 - ΔM= -3.3 ±1.4(stat)+1.0(syst) GeV/c²
 - **DO**:
 - ΔM = 3.8±3.7 GeV with 1 fb⁻¹.1

Asymmetries

- T-tbar spin correlation
 - Original spins are preserved since top quarks decay before hadronizing
 - Study asymmetry in opposite vs same sign helicity
 - New physics could change this from SM expectation of 0.78
 - D0 result looks like it is not especially consistent with SM but statistical precision too low to get excited yet

 $- \text{K} = -0.2^{+0.6}_{-0.5}$

- Forward -Backward asymmetry
 - DY = Y top Y anti-top relative to proton direction
 - SM has a small asymmetry (a few per cent)
 - New physics can alter this
 - Statistics too low to tell much yet

Search for

- Search in leptons plus jets
 - T' **→** T + W
 - Limits
 - D0: above 296 GeV/c²
 - CDF: above 335 GeV/c²
- B' → T + W → bWW
 - Limits:
 - CDF: Above 385 GeV/c²

First Observations of the Top Events at the LHC

- Data sets in CMS and ATLAS approaching 15 pb⁻¹
 - Top results are for 0.84 pb⁻¹ (CMS) and 0.295 pb⁻¹ (ATLAS)
 - Invaluable tune-up of analysis (see slide 3)
 - Using dileptons and leptons plus jets
 - Seeing the correct rate of t-tbar events compared to NLO cross sections given the uncertainties
 - Next step is to publish the cross section at 7 TeV

Prospects at LHC with 1 fb⁻¹

- Should be equivalent to ~20 fb⁻¹ at Tevatron
- Search for electroweak single top quarks, cross section is a direct measure for $|V_{tb}|$.
 - Might be able to observe single top quarks with 1fb^{-1} .
 - Single top is different at 7 TeV
 - Moret-channel relative to s-channel
 - t-W channel (15%)
- Measurement of $R=B(t\rightarrow Wb)/B(t\rightarrow Wq)$ in top pair production to measure $|V_{tb}|$.
 - A precision of ~10% is expected.
- Spin correlations are also different in strong top production due to different weighting of quark and gluon diagrams
- Search for resonances in the top-antitop mass spectrum;
 - Special reconstruction and selection methods required for "boosted tops" for very high energy tops from very heavy resonances
 - For "boosted tops" all decay products from a top may wind up in one fat jet

Medium Term and Long Term Prospects at the LHC

- σ (7 TeV) ~ 140 pb; σ (14 TeV) ~ 850 pb
- LHC performance
 - 1×10^{32} cm⁻²s⁻¹ reached **yesterday** (first 7 TeV beam on Mar 30@ 10^{26} cm⁻²s⁻¹)
 - Single bunch current is now higher than the 10³⁴ design
 - Emittance is smaller than expected
 - Dynamic aperture in quadrupole triplets is larger than expected (now β^{\ast} is 3.5m, can go to 1m)
 - Operating at ONLY 312 bunches out of 2808
- For medium term, CERN is "considering "
 - a new, higher luminosity goal of several 10³² cm⁻²s⁻¹
 - 8 TeV Center of Mass Energy
 - Running in 2012
 - Integrated Luminosity goal would be 5 fb⁻¹
- The above suggests that the LHC should approach 10³⁴ cm⁻² s⁻¹ at ~13-14 TeV in LHC Run Period 2 (through 2015)
 - Integrated luminosity of ~65 fb⁻¹ hoped for by end of 2015 (on current schedule)
 - At these luminosities, TOP production at LHC is equivalent to b-production at KEKB or PEPII B-factories, > 10⁷/year, an awesome concept