

NEW EXPERIMENTS SUMMARY TALK HEAVY QUARKS AND LEPTONS 2010

Angel López *University of Puerto Rico – Mayaguez*

October 15, 2010 Frascati, Italy

The luminosity upgrade era

- The challenge is to handle the increase.
- ➢ e⁺- e[−] Machines
 - **B** physics
 - > SuperB
 - > SuperKEKB
 - ➤ Kaons
 - ► KLOE-2
 - > K $\rightarrow \pi \nu \nu$
- Hadron collider
 LHC

Other initiatives

- > Neutrinos
 - $> \sin^2 \theta_{13}$
 - Solar Neutrinos
 - Beta Decay
 - Neutrinoless Double Beta Decay

Antiproton Storage Ring
 PANDA experiment

Further Continuation of Flavour Physics possible at a Super B Factory

- What is the next experimental step? Precision measurements
 - Much larger sample needed for this purpose -> <u>Super B factory</u>
- Hopefully new phenomena might be seen:
 - CPV in B decays from the physics outside the KM scheme.
 - Lepton flavour violations in τ decays.
- Physics models can be <u>identified</u> (if new effects are observed) or new ones can be <u>constrained</u> (if nothing is seen).
- Even in the worst case scenario (e.g. for MFV), B $\rightarrow \tau v$, D τv can probe the charged Higgs in the large tan β region.
- Physics motivation is independent of LHC.
 - If <u>LHC finds NP</u>, precision flavour physics is compulsory.
 - If <u>LHC finds no NP</u>, high statistics B/τ decays would be a unique way to search for the TeV scale physics.

Belle Upgrade for the Super B Factory

- SuperKEKB/Belle II aims for (discovering and) understanding the New Physics.
- Target Luminosity of SuperKEKB is 8x10³⁵/cm²/s, will provide 50ab⁻¹ by 2020-2021.
- Belle II gives similar or better performance than Belle even under ~20 times higher beam background.
- Project has been approved by Japanese Government in June 2010. KEKB/Belle operation has been terminated. Construction starts shortly.
- Next collaboration meeting: Nov. 17-20 @KEK, still open to everyone.
- Technical Design Report will be printed very soon.

6

Luminosity upgrade projection

Zdeněk Doležal

HQL2010 Frascati

Crab Waist

120#Amd /Nbunch

SFF as a τ factory: LFV in τ decays

- LVF negligibly small in the SM, larger in several SM extensions
- Many limits already pushed down by the *B* factories

Process	Expected	3σ evidence
	$90\%{\rm CL}$ upper limit	reach
$\mathcal{B}(\tau \to \mu \gamma)$	2.4×10^{-9}	5.4×10^{-9}
$\mathcal{B}(\tau \to e \gamma)$	3.0×10^{-9}	6.8×10^{-9}
$\mathcal{B}(\tau \to \ell \ell \ell)$	$2.3 - 8.2 \times 10^{-10}$	$1.2 - 4.0 \times 10^{-9}$

W-

- Extrapolation of bounds to *SuperB* luminosity $(1/\sqrt{L})$ based on *BABAR* experience
 - with improvements in *reconstruction* and *angular coverage* but not *analysis re-optimizarion* (1/L)
- \sim 80% polarized e^- beam further suppresses irreducible backgrounds
 - example: cos(helicity) of *signal* τ vs. *tag* τ

□ Limits for *SuperB* golden modes ($\tau \rightarrow \ell \gamma$ and $\tau \rightarrow \ell \ell \ell$) off the HFAG plot scale! The SuperB Project G. Finocchiaro @ HQL2010

Charm Physics @ Y(4S) & ψ (3770)

- Measurement of *D* oscillations opens new window to search of *CPV* in charm. Observation of *CPV* would provide unequivocal NP signals
- Dramatic improvement of precision in *D-D* mixing with 75ab⁻¹ @ Y(4S)
- strong phase difference δ_f unmeasured
- *@ DD* threshold, *SuperB* can exploit:
 - *D*-recoil technique; quantum coherence ■ with $0.5ab^{-1} @ \psi(3770)$ can measure

- FCNC modes to 10^{-8}
- strong phase differences δ_f to ±1°
- DP model uncertainty in γ angle measurement also greatly reduced

The Detector: General Considerations

- *SuperB* requirements very similar to those of the present *B* factories
 - Large solid angle coverage, good lepton ID, particle ID over large momentum range (π/ □ separation to over 4 GeV), measurement of the relative decay times of the *B* mesons, good low momentum resolution, good low energy photon energy measurement
- Main differences:
 - lower machine boost (smaller longitudinal separation of secondary vertices)
 - Need to improve vertex detector resolution
 - Much higher luminosity (and L-scaling background rates)
 Faster & more robust detectors
 - Keep an open, 100% efficient trigger
- Can re-use as much as possible & reasonable of the old detector
 - only possible because of low beam currents!

The SuperB Detector (with options)

The SuperB Project

PROSPECTS: LHCB UPGRADE

LHCb:	O(6 fb ⁻¹)	O(100 fb ⁻¹)	
	2015	2022	
ATLAS: CMS	O(30 fb ⁻¹)	O(500 fb ⁻¹)	

Very rare decaysCP violationNP studies

LHCb Upgrade

- Better Flavour Physics will be required to elucidate the NP flavour structure or probe NP at higher mass scale
 - LHC is a Super Flavour factory: 10⁶ Hz of b-quarks produced
 - LHCb exploits only a small fraction of LHC:
 - \mathcal{L}_{LHCb} =2x10³² cm⁻²s⁻¹ / \mathcal{L}_{LHC} =10³⁴ cm⁻²s⁻¹
 - LHCb Upgrade will be complementary to Super B(Belle) factory!
- LHCb Upgrade Strategy
 - Running at 10 times design luminosity, i.e. at ~ 2x10³³ cm⁻²s⁻¹
 - Upgrade planned in 2 phases matching LHC schedule :
 - Phase 1: ~ 2016 $\mathcal{L} = 10^{33} \text{ cm}^{-2}\text{s}^{-1} \cdot \text{R\&D}$ has started
 - Phase 2: $\mathcal{L} = 2x10^{33} \text{ cm}^{-2}\text{s}^{-1}$
 - read out full experiment at 40 MHz, currently at 1 MHz
 - Gain a factor 2 in the trigger efficiency for hadronic channels
 - vertex and photon detector needs to be replaced

Comparison with the LHCb

e^+e^- has advantages in	LHCb has advantages in
CPV in $B \rightarrow \phi K_S, \eta' K_S, \dots$ CPV in $B \rightarrow K_S \pi^0 \gamma$	CPV in $B \rightarrow J/\psi K_S$ Most of <i>B</i> decays not including <i>y</i> or <i>y</i>
$B \rightarrow K \forall V, \forall V, D \forall \forall V$ Inclusive $b \rightarrow s \mu \mu$, see $\tau \rightarrow \mu \gamma$ and other LFV $D^0 \overline{D^0}$ mixing	Time dependent measurements of B_S $B_{(s,d)} \rightarrow \mu\mu$
$D^{\circ}D^{\circ}$ mixing	B_c and bottomed baryons

Complementary!!

Heavy Flavours @ LHC bb angular production

- LHC is a B- and D-mesons super factory:
 - bb produced mostly forward/backward
 - Detectors have different acceptance:
 - ATLAS/CMS |η|<2.5
 - LHCb forward spectrometer covering η=[2,6]
 - ~30% in LHCb acceptance

An efficient trigger is essential

15/10/2010

Pascal Perret - LPC Clermont

 $B_{s} \rightarrow \mu^{+}\mu^{-}$

- ATLAS/CMS & LHCb should be complementary for such a measurement
 - Very soon LHC should be able to approach or surpass world best sensitivity
 - With 50 pb⁻¹ possible already to approach new limit:
 - LHCb alone:
 - BR(B_s $\rightarrow \mu^+\mu^-) < 3.4 \times 10^{-8} @90\%$ CL
 - 5 σ observation down to BR = 5 x SM with 1 fb⁻¹ (BR(B_s $\rightarrow \mu^+\mu^-) > 1.7 \times 10^{-8}$)
 - For a 5σ measurement at SM value a combination of all LHC observations will help!

LHCb sensitivities

With 100 fb⁻¹ error in 2β_s decreases to ±0.003 (only L improvement), useful to distinguish among Supersymmetry (or other) models, where the differences are on the order of ~0.02

LHCb Sensitivities (100 fb ⁻¹ @14TeV)						
Observable	Sensitivity	SM				
$CPV(B_s \rightarrow J/\psi \phi) (2\beta_s)$	0.003	0.04				
γ tree	1°	67.2°				
$B(B_s \rightarrow \mu^+ \mu^-)$	5-10% of SM	3.6×10 ⁻⁹				
$A_{FB}(B \rightarrow K^* \mu^+ \mu^-)$	0.07 GeV ²	4.36 GeV ²				
$CPV(B_s \rightarrow \phi \gamma)$	0.02	0.10				

- + many more observables:
 - ϕ_s in $B_s \rightarrow \phi \phi$, γ mediated by loops, cos 2β in $B_d \rightarrow J/\psi K_S$, ...
- The upgrade strategy is SLHC independent
 - Letter of Intent \rightarrow end 2010

DAΦNE collider

- At INFN's Laboratori Nazionali di Frascati
- Electron-positron collider working at the $\Phi\mathchar`$ resonance cms energy 1019.4 MeV

KLOE-2 and need for DAΦNE upgrade

- Ambitious physics program of KLOE-2 requires order of magnitude higher integrated luminosity than KLOE
- Going to be realized by implementing major upgrades of DAΦNE, viz.:
 - $^-$ Increased Piwinski angle $~\phi_P \sim heta/\sigma_x~$ by larger crossing angle of beams and reduced beam size at crossing point
 - "Crab waist" beam optics with suppressed betatron resonances, using two sextupoles at both sides of interaction point

Luminosity improvement with crab waist optics

KLOE-2 physics issues

- Prospects for CKM unitarity and lepton universality tests
- Search for quantum decoherence and testing CPT conservation
- Low-energy QCD: rare K decays, physics of η, η', structure of low-mass scalars
- The yy physics
- Contribution of vacuum polarization to $(g_{\mu} 2)$

SM and BSM prediction for $K \rightarrow \pi v v$

Future rare K decay experiments - T. Spadaro - HQ&L 2010, LNF, 15 October 2010

$K \rightarrow \pi v v$ sensitivity summary

Expt	Primary beam	Intensity (ppp)	SM evts/yr	Start date + run yrs	Total SM evts
NA62	SPS 450 GeV	3×10^{12}	55	2012+2	110
FNAL K [±]	Booster 8 GeV	2 × 10 ¹³	40	2015+2	80
FNAL K [±]	Project X 8 GeV	2×10^{14}	250	2018+5	1250
P996	Tevatron up <150 GeV	1 × 10 ¹³	120	2018+5	600
E14	JPARC-I 30 GeV	2×10^{14}	1-2	2011+3	3-7
E14	JPARC-II 30 GeV	3×10^{14}	30	2018+3	100
FNAL K _L	Booster 8 GeV	2×10^{13}	30	2016+2	60
FNAL K _L	Project X 8 GeV	2×10^{14}	300	2018+5	15 0 0

All dates/estimates are speculative, some are more speculative than others

Future rare K decay experiments - T. Spadaro - HQ&L 2010, LNF, 15 October 2010

FAIR – Facility for Antiproton

"Final Act States"

HESR – High Energy Storage/Synchrotron Ring

- antiproton ring
- injection 3.5 GeV/c
- 1.5 16 GeV/c (0.83 14 GeV)
- 10¹⁰ to 10¹¹ stored particles
- bunched beam
- high resolution mode
 - 2·10³¹cm⁻²s⁻¹ (10¹⁰ pbar)
 - $\sigma_p/p \le 2.10^{5}$
 - p ≤ 9 GeV/c, e⁻ cooling
- high luminosity mode
 - 2·10³²cm⁻²s⁻¹ (10¹¹ pbar)
 - σ_p/p ~ 10⁻⁴
 - p ≤ 15 GeV/c, stochastic cooling

RESR not part of the Start version: Accumulation in the HESR, limits intensity

Spectroscopy of Charmonium

$\overline{p}p\text{-}\mathsf{Annihilations:}$ high hadronic background

$\overline{p}p o J/\psi +X$
$J/\psi \rightarrow e^+e^-$
$\rightarrow \mu^+ \mu$
$\bar{p}p \to J/\psi \pi^+ \pi^- \to e^+ e^- \pi^+ \pi^-;$
$\overline{p}p \to J/\psi \pi^0 \pi^0 \to e^+ e^- \gamma \gamma \gamma \gamma;$
$\bar{p}p \to \chi_{c1,c2}\gamma \to J/\psi\gamma\gamma \to e^+e^-\gamma\gamma;$
$\bar{p}p \rightarrow J/\psi \gamma \rightarrow e^+ e^- \gamma;$
$\overline{p}p \rightarrow J/\psi \eta.$

X(3872)	BaBar, Belle, CDF, D0	1**, 2 ⁻⁺ , DºD*, qqqq ?
X(3930)	Belle	2 ⁺⁺ χ _{c2} (2P)
X(3940)	Belle	?
X(3945)	BaBar, Belle	??+ η _c (3S)?
X(4160)	Belle	?
Y(4260)	BaBar, Belle, CLEO	1
Y(4360)	BaBar, Belle	1
X(4660)	BaBar, Belle	1
h _e	CLEO	1+-
η'e	BaBar, Belle, CLEO	0-+

The PANDA Detector

Timeline

Unknown: θ_{13} , δ_{cp} , sign(Δm_{32}^2)

Under construction

	Thermal		Near		Far		2	
Pow (GV	Power (GW)	ower (Tons) GW)	Distance (m)	Depth (m.w.e.)	Distance (m)	Depth (m.w.e.)	(%)	
Double Chooz	8.5	10 / 10	400	115	1050	300	0.6	
RENO	17.3	16 / 16	290	120	1380	450	0.5	
Daya Bay	17.4	40, 40 / 80	363 &481	260 &300	1985 &1613	870	0.38	

Solar Neutrino

Mass Measurement

Beta Decay

- Model independent
 - Majorana or Dirac, CP phase
 - Nuclear matrix element
- Squared neutrino mass (absolute)
- Current discovery potential: degeneracy

Ονββ Decay

- Model dependent
- Majorana neutrino
- Effective neutrino mass
- Current discovery potential: IH

Beta Decay

Model-Independent Measurement: Kinematics and energy conservation

$$\frac{\mathrm{d}\Gamma_i}{\mathrm{d}E} = C \cdot p \cdot (E + m_e) \cdot (E_0 - E) \cdot \sqrt{(E_0 - E)^2 - m_i^2} F(E,Z) \cdot \theta(E_0 - E - m_i)$$
(v-mass)²

If $m_v \neq 0$: shift the endpoint and change the shape

Measure the region close to endpoint:

- Low endpoint beta source
- ✓ High count rate
- High energy resolution
- Extremely low background

KATRIN

Tritium source, endpoint 18.6KeV, $t_{1/2}$ 12.3y, high activity 10¹¹ β /s

Schedule: Start main spectrometer test in 2011, Commissioning of completed setup in 2012.

Ονββ Decay Experiments

Name	Isotope	Technique	Mass	Location	Sensitivity	Time
CUORICINO	Te-130	Bolometer	11kg	LNGS	0.40eV	2003 - 2008
CUORE	Te-130	Bolometer	200kg	LNGS	0.22eV	2013 -
COBRA	Cd-116	Semiconductor	183kg	LNGS		
GERDA I/II	Ge-76	Semiconductor	18/40kg	LNGS	75-129meV	2009 (comiss.)
Majorana	Ge-76	Semiconductor	30kg	DUSEL	20-41meV	2011 -
NEMO-3	Mo-100	Tracking-calo	7kg	LSM	0.3-0.9eV	till 2010
SuperNEMO	Se-82	Tracking-calo	100+kg	LSM	40-110meV	2013 -
SNO+	Nd-150	Scintillator	44kg	SNOlab	150meV	2012 -
KamLAND-Zen	Xe-136	Scintillator	400kg	Kamioka	60meV	2011 -
CANDLES III	Ca-48	Scintillator	305kg	Kamioka		
EXO-200	Xe-136	Liquid TPC	200kg	WIPP	109-135meV	2009 (comiss.)
EXO	Xe-136	Gas TPC	1-10ton	SNOlab		
completed construction or preparation R&D						

And some other experiments...

Conclusion

Given the reality that a higher energy machine will not be built for a while, it is encouraging to see many new experiments for our young HEP physicists to work on.