K_L and K_s lifetime @KLOE

> Marco Dreucci LNF, INFN HQL-2010 October 2010 Frascati

DA Φ NE e^+e^- collider at LNF.

- $\sqrt{s} \sim 1019.46 \text{ MeV} = m_{\phi}$
- σ_{ϕ} ~ 3 µb at peak
- crossing angle ~ 12.5 mrad
- today L_{peak} = 4.5× 10^{3 2} cm⁻²s⁻¹

The KLOE Experiment

Detector performances

$\sigma_E / E = 5.7 \% / \sqrt{E(GeV)}$ $\sigma_t = 54 / \sqrt{E(GeV)} \oplus 140 \ ps$

EM Calorimeter

Drift Chamber

 $\sigma(p_{\perp})/p_{\perp} = 4\%, \sigma(m_{K_s}) = 1 MeV$ $\sigma_{x,y} = 150 \,\mu m; \sigma_z = 2 mm; \sigma_{vtx} = 1 mm$

Neutral kaon physics @ KLOE

$K_{S} \longleftarrow \phi \longrightarrow K_{L}$	φ decay mode	BR
$\frac{1}{\sqrt{2}} \left(K_L, p\rangle K_S, -p\rangle - K_L, -p\rangle K_S, p\rangle \right)$	K^+K^-	~ 49 %
	$K_{S}K_{L}$	~ 34 %

• The ϕ decay at rest provides **monochromatic** and **pure** beam of slow kaons (p*=110 MeV/c, β ~0.22);

\rightarrow interference measurements

• K_S (K_L) decay signals presence of K_L (K_S) \rightarrow absolute BRs

$$\lambda_s = 6 \text{ mm}; \lambda_L = 3.4 \text{ m}$$
 ~ 40% of K_L decays
inside the DC
All of K_s decays inside the beam pipe

Summary of KLOE data taking

$\int L = 2.2 \text{ fb}^{-1} @ \phi \text{ peak}$

yielding $2 \times 10^9 K_S K_L$ pairs

K_L lifetime @ kloe

⇒ before KLOE : last measurement, ~1%, Vosburgh, 1972

 \Rightarrow input for V_{us} determination

K_L lifetime sample selection

• Fit to the proper time distribution for $K_L \rightarrow \pi^0 \pi^0 \pi^0$

decay events (large BR~21% and low BKG~1%)

- K_{L} tagged by $K_{S} \rightarrow \pi^{+} \pi^{-}$ (2 OS tracks from ~IP, $|M_{\pi\pi}-M_{K}|$ <5 MeV ...)
- We require at least $N_{\gamma} \ge 3$ clusters in EmC not associated to any track, E_i>20 MeV, d_{ii}>50cm)
- FV ~ 40°<θ_K<140°
- A sample of ~45 million $K_{L} \rightarrow \pi^{0} \pi^{0} \pi^{0}$ decays is selected

K_L lifetime vertex reconstruction

• For each cluster not associated to any track $\rightarrow L_{K,i}$

• K_L decay path L_{κ} is obtained from the energy weighted average of two closest clusters; the 3rd within $5\sigma(L_{\kappa})$

K_L lifetime control sample

- We use $K_L \rightarrow \pi^+ \pi^- \pi^0$ control sample to measure :
 - $\Rightarrow L_{\kappa}$ accuracy (EmC time scale calibration)
 - \Rightarrow vertex resolution
 - \Rightarrow vertex reconstruction efficiency

K_L lifetime control sample (II)

K_L lifetime control sample (III)

K_L lifetime background

• To reduce BKG fron ~5% \to ~1% require a $\rm E_{_{CL}}>$ 50 MeV on the barrel, no tracks approaching the $\rm K_{_L}$ line of flight by less than 20 cm :

channel	B/(S+B)	
- $K_L \rightarrow \pi^+ \pi^- \pi^0$	0.44 %	
- $K_L \rightarrow \pi^o \pi^o$	0.42 %	
- $K_L \rightarrow K_S \rightarrow \pi^o \pi^o$	0.28 %	
- $K_L \rightarrow other$	0.1 %	

K_L lifetime bkg from nuclear interaction

- K₁ interactions with DC (reg.+ Λ + Σ) bias lifetime (reduce L_k);
- $\cos \alpha = \overrightarrow{P\kappa_{L}} * (\Sigma_{i=1,n} \overrightarrow{p_{i}}) / |\overrightarrow{P\kappa_{L}}|| (\Sigma_{i=1,n} \overrightarrow{p_{i}})|$

Blue : MC with Nuclear Interactions Red : MC without Nuclear Interactions Black : Data

K_L lifetime fit

K_L lifetime systematics

Source	value (ns)	
 tagging eff. selection eff. time scale bkg sub 	0.17 0.08 0.06 0.08	
Total	0.21	

K_L lifetime preliminary result

• Previous Kloe direct measurement :

• BR($K_{L} \rightarrow all$) depends on the K_{L} lifetime through the acceptance. Assuming BR($K_{L} \rightarrow all$) = 1 we have an indirect measurement of K_{L} lifetime :

$$\tau_{K_{L}} = (50.72 \pm 0.11_{stat} \pm 0.35_{syst}) \text{ ns}$$

Phys. Lett. B632: 43-50 (2006)

K_L lifetime results on the market

K_s lifetime @ kloe

 \Rightarrow with K_s lifetime, Kloe provides all inputs for V_{us} determination

K_s Lifetime introduction

- Fit to proper time distribution, $t^* = L_{\kappa}/\beta\gamma c = L_{\kappa}M_{\kappa}/cp_{\kappa}$ using $K_s \rightarrow \pi^+\pi^-$ decay events
- Needs for $O(10^{-4})^*$ measurement :
 - O(10⁷) $K_s \rightarrow \pi^+ \pi^-$, not a problem with the KLOE data set, 0.4 fb⁻¹ (2004)
- Calibration of K_s momentum at 10⁻⁴: determination from \sqrt{s} and kinematic ;

- Decay length resolution: improve resolution as much as possible ;

- Calibration of decay point: use redundant $K_{_S}$ momentum determination, $p_{_{\!\pi\!\pi}}$ and $p_{_{\!K}}$

* ~ accuracy of WA (NA48 + KTeV)

K_s Lifetime sample selection

K. Lifetime resolution improvement

M.D and KS

K_s Lifetime decay length & momentum calibration

K_s Lifetime efficiency

averaged over $[\phi_{\kappa}, \cos\theta_{\kappa}]$

K. Lifetime fit method

```
• Detector divided in : 18x10 [\phi_{\kappa}, \cos\theta_{\kappa}] (-0.5<\cos\theta_{\kappa}< 0.5)
Account for resolution dependence
Check result stability vs [\phi_{\kappa}, \cos\theta_{\kappa}]
• Fit range : 15 bins from -1 to +6.5 (\tau_s)
• Fit parameters: \tau, \sigma_1(\phi, \theta), \sigma_2(\phi, \theta)
          Check result stability vs [\phi_{\kappa}, \cos\theta_{\kappa}]
        \label{eq:Fitparameters: target} {\sf Fit parameters: \tau, \sigma_1(\phi, \theta), \sigma_2(\phi, \theta), \alpha(\phi, \theta), \delta(\phi, \theta) } \\
• Resolution: R = \alpha g_1 + (1 - \alpha) g_2
• Fit function
derived from : f(t) = A \int_{-\infty}^{\infty} \theta(x) \frac{1}{\tau} \exp(x/\tau) \varepsilon(x) g(t + \delta - x) dx
   • We perform 180 fits \rightarrow weighted average
```

K_s Lifetime fit result

K_s Lifetime systematics

Source	value (ps)	
- fit range : - L _κ calibration:	0.012 0.024	
- p _k calibration:	0.033	
- Kaon mass : - efficiency :	0.004 0.005	
Total	0.043	
$_{Ks} = (89.562 \pm 0.11)$	029 _{stat} ± 0.0	43_{stat})

ps

τ

K_s Lifetime results on the market & WA

K_s Lifetime isotropy of Ks lifetime ?

• The CMB dipole anisotropy, if interpreted as a Doppler effect, is due to Local Group motion (~570 km/s) in the direction :

(1,b)~(264°, 48°)

- A test of the isotropy of K_s lifetime is done by comparing the result parallel and antiparallel w.r.t. an assigned direction

retain decay events with
$$\mathbf{p}_{\mathbf{k}, GC}$$

within a 30° cone around: $A = \frac{\tau^{UP} - \tau^{down}}{\tau^{UP} + \tau^{down}} \times 10^{3}$
(263.86°, 48.24°) (CMB)
(173.86°, 0°)
(263.86°, -41.76°) $\rightarrow 0.2 \pm 1.0$
 0.0 ± 0.9

K_L & K_s lifetime conclusion

 K_L : multiphoton vtx reconstruction, signal selection and bkg rejection in good shape ;

- try to increase the fit region ;
- Stability in each single run period;
- Systematics check already started (fit range, bckg subtraction, cut variation....) to be finalized ;

Try to $O(5 \times 10^{-3}) \rightarrow O(3 \times 10^{-3})$

 K_{S} lifetime result, ~ 5×10⁻⁴, is being to be submitted

SPARES

Tagging efficiency

Photon energy spectrum

Multiphoton vertex mulitiplicity

Test from K_L-crash (Data)

