Searches for Leptonic B-decays and $B \rightarrow D^{(*)}\tau v$ at the B-factories

Dana Lindemann McGill University, Canada On Behalf of the BaBar Collaboration

Heavy Quarks & Leptons October 11, 2010

Outline

- Introduction & Motivation
- B Reconstruction Methodology
- Updates on BaBar and Belle searches for:
 - $B \rightarrow \tau v$
 - $B \rightarrow \ell \nu(\gamma)$
 - $B \rightarrow D^{(*)} \tau v$

Search for New Physics (NP)

Standard Model (SM) predictions in flavor sector successfully confirmed by B-factories!

But discrepencies exist – is there a NP model that's better?

Goal: Compare experimental results with SM predictions to hopefully find evidence of NP and constrain NP parameters.

HQL - 2010

Reconstruction Methods

Since both $B \rightarrow D^{(*)}\tau v$ and $B \rightarrow \ell v$ have (several) final-state neutrinos, we exploit our $\Upsilon(4S) \rightarrow B\overline{B}$ production by reconstructing a " B_{tac} " in two ways:

"Exclusive" Analysis

- Fully reconstruct B_{tag} via $B \rightarrow D^{(*)0} X$
- 2 Check if remaining particles are consistent with signal decay

Provides a clean sample

Low reconstruction efficiency ~1% Semi-Leptonic B_{tag}

~0.3% Hadronic B_{tag}

<u>"Inclusive" Analysis</u>

- Select signal decay products
- 2 Check if remaining particles are consistent with B_{tag}

signal

Photons

Larger backgrounds

Higher signal efficiency (~5% for $B \rightarrow \ell \nu$)

signal µ

Reconstruction Methods (II)

Since both $B \rightarrow D^{(*)}\tau v$ and $B \rightarrow \ell v$ have (several) final-state neutrinos, we exploit our $\Upsilon(4S) \rightarrow B\overline{B}$ production by reconstructing a " B_{tan} " in two ways:

HQL - 2010

Search for $B \rightarrow \tau v$

1. 1. P. M.

Dana Lindemann

7

arXiv:1008.0104 (2010) 468 x10⁶ BB

BaBar B $\rightarrow \tau v$ with Hadronic Tag: Results

- Extract BF using unbinned maximum likelihood fit to E_{extra}
- Signal and peaking bkg PDFs from MC corrected for data/MC ratio using m_{ES} distribution. Combinatorial bkg PDF from m_{ES} sidebands in on-resonance data

Exclusion of null hypothesis at 2.3 σ

Belle $B \rightarrow \tau \nu$ Semi-Leptonic Tag

- Reconstruct evv, μvv , and πv (50% of τ modes)
- Requirements on τ momentum and $\cos\theta_{B,D\ell}$
- MC corrected for data/MC ratio using double-tagged E_{extra}

$B \rightarrow \tau v$: Comparison of Results

Search for $B \rightarrow \ell \nu(\gamma)$ (where $\ell = e, \mu$)

PRD79:091101 (2009) BaBar $B \rightarrow \ell v$ Inclusive Analysis

Helicity suppressed but clean decay with monoenergetic lepton (2.64 GeV/c)

- Assign high momentum lepton (particle ID) and missing energy as signal decay
- Reject events with more leptons.
- Assign B_{tag} as rest of event with requirements on its ΔE and p_{T}
- Suppress background using Fisher discriminant of kinematic and event-shape variables.
- Extract yield from 2D fit to m_{ES} and $p_{FIT} = a_0 + a_1 p_{\ell}^{CM} + a_2 p_{\ell}^{B_{rest}}$
- No signal decays were observed.

90% CL	BaBar	Belle	Standard		
	Inclusive	Phys Lett B 647, 67 (2007)	Model		
B→ev	< 1.9x10 ⁻⁶	< 0.98x10 ⁻⁶	~1x10 ⁻¹¹		
B→μν	< 1.0x10 ⁻⁶	< 1.7x10 ⁻⁶	~5x10 ⁻⁷		

HQL - 2010

468 x10⁶ BB

Search for $B \rightarrow D^{(*)}\tau v$

0.3

$B \rightarrow D^{(*)} \tau v$ Hadronic Tag

- After B_{tag} , reconstruct D^(*) through ~10 modes. Require exactly 1 lepton: e or μ .
- Suppress combinatorial bkg using E_{extra} and p_{ℓ} (and for BaBar: q^2 and p_{miss})
- Simultaneous extract all modes from 2D fit to m_{miss}^2 and $\begin{cases} p_{\ell}^{\text{B_rest}}(\text{BaBar}) \\ E_{\text{extra}} \end{cases}$ (Belle) where $m_{\text{miss}}^2 \equiv p_{beam} - p_{B_{\text{tag}}} - p_{D^{(*)}} - p_{\ell} \end{cases}$ peaks at 0 for $B \rightarrow D^{(*)}\ell v (1 v)$ bkd
 - BaBar: also simultaneously fit to $B \rightarrow D^{**} \ell \nu$ control samples

$B \rightarrow D^{(*)}\tau \nu$ Comparison of Results

Conclusions

- $B \rightarrow \tau v$ and $B \rightarrow D^{(*)} \tau v$: now well-established decays, observed at both BaBar and Belle
- $B \rightarrow \mu \nu$ and $B \rightarrow \ell \nu \gamma$: not yet observed, but sensitivity near SM expectations! Observations expected at next generation B-factories
- Measured BFs and SM expectations consistent within uncertainties, but room for NP!
- $B \rightarrow \tau v$ and $B \rightarrow D \tau v$ already provide exclusion in plane of 2HDM parameters $m_H x \tan \beta$. B-factory sensitivity is competitive with direct searches at LHC!

Extra Slides

11.34

Luminosities

arXiv:1008.0104 (2010) 468 x10⁶ BB

BaBar B→τv Hadronic Tag

Decay Mode	$\epsilon \times 10^{-4}$	Branching Fraction $(\times 10^{-4})$	Significance σ
$\tau^+ ightarrow e^+ \nu \bar{\nu}$	2.73	$0.39\substack{+0.89\\-0.79}$	0.5
$\tau^+ o \mu^+ \nu \bar{\nu}$	2.92	$1.23\substack{+0.89\\-0.80}$	1.6
$\tau^+ ightarrow \pi^+ u$	1.55	$4.0^{+1.5}_{-1.3}$	3.3
$\tau^+ ightarrow ho^+ u$	0.85	$4.3^{+2.2}_{-1.9}$	2.6
combined	8.05	$1.80\substack{+0.57\\-0.54}$	3.6

HQL - 2010

Dana Lindemann

29

BaBar B→ℓvv Hadronic Tag

PRD80:111105 (2009) 465 x10⁶ BB

	$B^+ \rightarrow e^+ \nu_e \gamma$	$B^+\!\! o \mu^+ u_\mu \gamma$	$B^+ \!\! \to \ell^+ u_\ell \gamma$
$N_{\ell}^{ m comb}$	$0.3 \pm 0.3 \pm 0.1$	$1.2 \pm 0.6 \pm 0.6$	
N_{ℓ}^{peak}	$2.4 \pm 0.3 \pm 0.4$	$2.1 \pm 0.3 \pm 0.3$	
$N_{\ell}^{ m bkg}$	$2.7 \pm 0.4 \pm 0.4$	$3.4 \pm 0.7 \pm 0.7$	
ϵ_{ℓ}^{sig}	$(7.8 \pm 0.1 \pm 0.3) { imes} 10^{-4}$	$(8.1 \pm 0.1 \pm 0.3) { imes} 10^{-4}$	
$N_{\ell}^{ m obs}$	4	7	
$\mathcal{B}_{\text{combined}}$			$(6.5^{+7.6}_{-4.7}) \times 10^{-6} \times 10^{-6}$
Model-independent limits	$< 17 \times 10^{-6}$	$< 26 \times 10^{-6}$	$< 15.6 \times 10^{-6}$
$f_A = f_V$ limits	$< 8.4 imes 10^{-6}$	$< 6.7 imes 10^{-6}$	$< 3.0 \times 10^{-6}$
$f_A = 0$ limits	$< 29 imes 10^{-6}$	$< 22 \times 10^{-6}$	$< 18 \times 10^{-6}$

Belle B \rightarrow D^(*) τ v Inclusive

TABLE II.	Summary	of the	systematic	uncertainties.
-----------	---------	--------	------------	----------------

Source	$ar{D}^{*0} au^+ u_ au$	$ar{D}^0 au^+ u_ au$
$N_{B\bar{B}}$	$\pm 1.4\%$	$\pm 1.4\%$
Reconstruction of $B_{ m tag}$ and $B_{ m sig}$	$\pm 12.9\%$	$\pm 12.8\%$
Lepton-id and signal selection	$^{+1.5}_{-1.6}\%$	$^{+4.4}_{-4.5}\%$
Shape of the signal PDF's	$\pm 2.5\%$	$\pm 6.0\%$
Comb. and peaking backgrounds	$\pm 3.3\%$	$\pm 2.7\%$
Fitting procedure	$\pm 0.8\%$	$\pm 1.5\%$
Total	$\pm 13.9\%$	$\pm 15.2\%$

Subchannel	$N_b^{\rm MC}$	N_p	N_s	N_b	$N_{\rm obs}$	$\epsilon imes 10^{-4}$	$B \times 10^{-3}$	$\mathcal{B}(\%)$	Σ	S
$\bar{D}^0 \rightarrow K^+ \pi^-, \ \tau^+ \rightarrow e^+ \nu_e \bar{\nu}_{\tau}$	$26.3^{+5.4}_{-3.7}$	$1.2^{+1.6}_{-1.5}$	$19.5^{+5.8}_{-5.0}$	$19.4^{+5.8}_{-5.0}$	40	3.25 ± 0.11	4.59	$2.44_{-0.65}^{+0.74}$	5.0σ	0.79
$\bar{D}^0 \rightarrow K^+ \pi^- \pi^0, \ \tau^+ \rightarrow e^+ \nu_e \bar{\nu}_\tau$	$50.8^{+5.5}_{-5.1}$	$5.0^{+2.6}_{-2.2}$	$11.9^{+6.0}_{-5.2}$	$43.1^{+8.0}_{-7.2}$	60	0.78 ± 0.07	17.03	$1.69^{+0.84}_{-0.74}$	2.6σ	0.50
$\bar{D}^0 \rightarrow K^+ \pi^-, \ \tau^+ \rightarrow \pi^+ \bar{\nu}_{\tau}$	$138.0\substack{+9.2\\-8.8}$	$-1.0^{+3.6}_{-3.2}$	$29.9^{+10.0}_{-9.1}$	$118.0^{+14.0}_{-13.0}$	148	$1.07^{+0.17}_{-0.15}$	25.72	$2.02\substack{+0.68\\-0.61}$	3.8σ	0.48
Combined	215^{+12}_{-11}	$6.2\substack{+4.7 \\ -4.2}$	60^{+12}_{-11}	182^{+15}_{-14}	248	$1.17\substack{+0.10 \\ -0.08}$	47.34	$2.02\substack{+0.40\\-0.37}$	6 .7σ	0.57

arXiv: 1005.2302 (2010) PRL 100, 021801 (2008)

PRD 79, 092002 (2009)

BaBar B \rightarrow D^(*) τ v Hadronic Tag

HQL - 2010

33

HQL - 2010

Dana Lindemann

34

B-Factory Sensitivity

