Test of Lepton Flavor Universality with Ke2 decay at KLOE and KLOE-2

Barbara Sciascia, LNF INFN for the KLOE collaboration

Heavy Quarks and Leptons Frascati, Italy – 12th October 2010

Test of Lepton Flavor Universality with Ke2 decay at KLOE and KLOE-2

- R_{K} =Ke2/Kµ2 in and beyond the SM
- R_K measurement at KLOE
- Study of radiative process Ke2γ at KLOE
- KLOE-2 prospects for Ke2

KLOE and $Da\Phi ne$

e⁺e⁻ collider, cm energy: $\sqrt{s} \sim m_{\phi} = 1019.4$ MeV Angle between the beams at IP: $\alpha \sim 12.5$ mrad Residual laboratory momentum of ϕ : $p_{\phi} \sim 13$ MeV Cross section for ϕ production at peak: $\sigma_{\phi} \sim 3.1 \ \mu b$ KLOE data taking completed (2001/6): **2.5 fb⁻¹** integrated at $\sqrt{s}=M(\phi)$;

 0.25 fb^{-1} at $\sqrt{s} \sim 1 \text{ GeV}$

More information on KLOE-2: Wojtek WISLICKI talk's on Friday

A novel collision scheme "large **Piwinsky angle and crabbed waist**" implemented: (at least) L ~3× ⇒ Ldt~1pb⁻¹/hour.

KLOE-2 luminosity goal: step0, ~5 fb⁻¹ at $\sqrt{s}=M(\phi)$ step1, >20fb⁻¹ at $\sqrt{s}=M(\phi)$

The KLOE detector

Large cylindrical drift chamber + lead/scintillating-fiber calorimeter + superconducting coil providing a 0.52 T field

 σ_p/p 0.4 % (tracks with $\theta > 45^\circ$) $\sigma(m_{KS}) \le 1$ MeV σ_x^{hit} 150 μ m (xy), 2 mm (z) σ_x^{vertex} ~1 mm

σ_E/E	5.7% /√ <i>E</i> (GeV)
σ_t	54 ps /√ <i>E</i> (GeV) ⊕ 140 ps
	(relative time between clusters)
$σ_L(γγ)$	~2 cm (π^0 from $K_L \rightarrow \pi^+ \pi^- \pi^0$)

NP potential of
$$R_{K} = \Gamma(K_{e2}^{\pm})/\Gamma(K_{\mu2}^{\pm})$$

- SM prediction with 0.04% precision, benefits of cancellation of hadronic uncertainties (no f_K): $R_K = 2.477(1) \times 10^{-5}$ [*Cirigliano Rosell arXiv:0707:4464*].
- Helicity suppression can boost NP [Masiero-Paradisi-Petronzio PRD74(2006)011701].

LFV can give O(1%) deviation from SM (Δ_R^{31} ~5×10⁻⁴, tan β ~40, m_H~ 500 GeV)

- Exp. accuracy on R_K (before KLOE and NA62 results) at 5% level.
- New measurements of R_K can be very interesting, if error at 1% level or better.

Ke2(y): signal definition

- Define as "signal" events with $E_{\gamma} < 10$ MeV.
- Evaluating **IB** spectrum (O(α)+resummation of leading logs) obtain a 0.0643(7) correction for the IB tail.
- Under 10 MeV, the **DE** contribution is expected to be negligible.

$$R_{K} = \frac{N_{Ke2}}{N_{K\mu2}} \left[\frac{\varepsilon_{K\mu2}^{\text{REC}}}{\varepsilon_{Ke2}^{\text{REC}}} C^{\text{TRG}} C^{\text{REC}} \right] \frac{1}{\epsilon^{\text{IB}}}$$

1) Select kinks in DC (~ fiducial volume)

- K track from IP

- secondary with p_{lep} >180 MeV for decays occurring in the FV; the reconstruction efficiency is ~51%.

2) No tag required on the opposite
"hemisphere" (as we usually do!)
→ gain ×4 of statistics

MC 10 Кμ2 Kπ2 3) Exploit tracking of K and 10 secondary: assuming $m_v=0$ get M^2_{lep} : 10⁶ 10 $M_{lep}^2 = (E_K - p_{miss})^2 - p_{lep}^2$. 10 Ke2 (E_v<10MeV) 10 Around $M^2_{lep}=0$ we get $S/B \sim 10^{-3}$, mainly due to tails on the momentum Ke2 (E_y>10MeV) 10 resolution of Kµ2 events. 0 20000 40000 M^{2}_{lep} (MeV²)

Background rejection (track quality)

- after cuts, we accept~35% of decays in the FV
- most of Ke2 events lost have bad resolution
- S/B ~ 1/20, not enough!

• require the lepton track to be extrapolable to the calorimeter surface and to be associated to an energy release (cluster).

1) Particle ID exploits EMC granularity (energy deposits into 5 layers in depth): the energy distribution and

the position along the shower axis of all cells associated to the cluster allow for e/μ PID (define 11 descriptive variables).

2) Add E/p and ToF.

3) Combine all information in a neural network (NN).

• Use a pure sample of 14000 A K_Le3 to correct cell data K_{Le3} 12000 response in MC. MC K_{Le3} 10000 • $K_L e^3$ and $K\mu^2$ for 800 NN training. 600 400 2000 0.81.20.20.61.00.00.4**NN**_{out}

Select a region with good S/B ratio in the $M_{lep}^2 - NN_{out}$ plane

after selection: $\epsilon \sim 30\%$ (~15,000 K_{e2}) S/B ~ 5

Ke2 at KLOE and KLOE-2 - B. Sciascia - HQL10, Frascati

K_{e2} event counting

Two-dimensional binned likelihood fit in the M_{lep}^2 -NN_{out} plane in the region -4000<M_{lep}²<6100 and 0.86<NN_{out}<1.02.

We count **7060 (102) Ke2+ 6750 (101) Ke2-** ($\sigma_{\text{STAT}}=1\%$, **0.85% from Ke2**)

K_{e2} event counting

Two-dimensional binned likelihood fit in the M_{lep}^2 -NN_{out} plane in the region -4000<M_{lep}²<6100 and 0.86<NN_{out}<1.02.

We count **7060 (102) Ke2+ 6750 (101) Ke2-** ($\sigma_{\text{STAT}}=1\%$, **0.85% from Ke2**)

K_{e2} event counting: systematics

Repeat fit with different values of $\max(M^2_{lep})$ and $\min(NN_{out})$: vary significantly (×20) bkg contamination + lever arm.

Ke2 at KLOE and KLOE-2 – B. Sciascia – HQL10, Frascati

K_{e2} event counting: systematics

Repeat fit with different values of $\max(M^2_{lep})$ and $\min(NN_{out})$: vary significantly (×20) bkg contamination + lever arm.

Ke2 at KLOE and KLOE-2 – B. Sciascia – HQL10, Frascati

K_{e2} event counting: systematics

We change by a factor of 20 the amount of bkg falling in the fit region by moving

- min(NNout)
- max(M^2_{lep}).

Signal counts change by 15%.

From the pulls of the R_K measurements we evaluated a 0.3% systematic error. 0.96 0.15 min 0.94 bkg 0.1 0.92 0.9 0.05 R_K pull: 0.88 0.86 0.84 -0.05 0.82 -0.1 0.8 max -0.15 0.78 hkg 0.76 6000 4500 5000 5500 6500 7000 7500 $max(M_{lep}^2)$ (MeV²)

min(NNout)

Reconstruction efficiencies

$$R_{K} = \frac{N_{Ke2}}{N_{K\mu2}} \left[\frac{\varepsilon_{K\mu2}^{\text{REC}}}{\varepsilon_{Ke2}^{\text{REC}}} C^{\text{TRG}} C^{\text{REC}} \right] \frac{1}{\epsilon^{\text{IB}}}$$

The ratio of Ke2 to Kµ2 efficiencies is evaluated with MC and corrected using data control samples

1) kink reconstruction (tracking): K⁺e3 and K⁺μ2 data control samples selected using the tagging and additional criteria based on EMC information only

2) cluster efficiency (e, μ) : K_L control samples, selected with tagging and kinematic criteria based on DC information only

3) trigger: exploit the OR combination of EMC and DC triggers (almost uncorrelated); downscaled samples are used to measure efficiencies for cosmic-ray and machine background vetoes

We obtain: $\epsilon(\text{Ke2})/\epsilon(\text{K}\mu2) = 0.946 \pm 0.007$

S	Tracking	0
ati	Trigger	0
em	Syst on Ke2 counts	0
yst	Ke2y DE component	0
5	Clustering for e, µ	0

0.6%K⁺ control samples0.4%downscaled events0.3%fit stability0.2%measurement on data0.2%K₁ control samples

 $R_{\rm K} = (2.493 \pm 0.025 \pm 0.019) \times 10^{-5}$

Total error:

1.3% = 1.0%_{stat} + 0.8%_{syst} 0.9% from 14k Ke2 0.6% from + bkg subtraction c.s. statistics

- The result does not depend upon the kaon charge: K^+ : 2.496(37) vs K⁻: 2.490(38) (uncorrelated errors only)
- Agrees with SM prediction

R_K : sensitivity to new physics

Sensitivity shown as 95% CL excluded regions in the tan β -M_H plane, for different values of the LFV effective coupling, $\Delta_R^{31} = 10^{-3}$, 5×10⁻⁴, 10⁻⁴

$$R_{K}^{LFV} \approx R_{K}^{SM} \left(1 + \frac{m_{K}^{4}}{m_{H}^{4}} \frac{m_{\tau}^{2}}{m_{e}^{2}} \left| \Delta_{R}^{31} \right|^{2} \tan^{6} \beta \right)$$

[A.Masiero, P.Paradisi, R.Petronzio, J. High Energy Phys. **0811**, 042 (2008)]

• Analysis inclusive of photons in the final state. In our fit region we expect: 10^{-1} **MC** spectra Κμ2 PID>0.98 $\frac{\text{Ke2} (\text{E}_{\gamma} > 10 \text{MeV})}{\text{Ke2}(\text{E}_{\gamma} < 10 \text{MeV})} \sim 10\%$ 10 Ke2 (E_v<10MeV) • Repeat fit by varying Ke2 (E_{γ} >10 MeV) 10^{-2} by 15% (DE uncertainty) get 0.5% error. Ke2 (E_v>10MeV) 10 We performed a **dedicated study of the** Ke2y differential decay rate -5000 5000 10000 0 M^{2}_{lep} (MeV²)

Ke2y process

 $\frac{d\Gamma(K \to ev\gamma)}{dxdy} = \rho_{IB}(x,y) + \rho_{SD}(x,y) + \rho_{INT}(x,y)$ helicity Dalitz density: $x = 2E_{\gamma}/M_{K} \quad y = 2E_{e}/M_{K}$ negligible E_{γ} , E_{e} in the K rest frame suppressed Structure Dependent (f_V , f_A : effective vector and axial couplings) $\rho_{SD}(x,y) = \frac{G_F^2 |V_{us}|^2 \alpha}{64 \pi^2} M_K^5 \left((f_V + f_A)^2 f_{SD+}(x,y) + (f_V - f_A)^2 f_{SD-}(x,y) \right)$ **p**_e (MeV) $p_e(MeV)$ end-point of Ke3 end-point of Ke3 200 200 -5 SD+ SD-150 150 10 100 100 V -7 $\mathbf{\lambda}$ 10 50 -8 50 10 -8 10 0 6 0 50 100 150 200 250 50 100 150 200 250 E_v(MeV) E_v (MeV)

1) ChPT at O(p⁴): $f_V \approx 0.0945$ $f_A \approx 0.0425$ no dependence on photon energy 40 Bijnens, Ecker, Gasser 93 ·ChPT O(p⁴) from Phys. Rev. D77 (2008) 014004 35 $- - ChPT O(p^{6})$ ----- LFQM 30. 10^6 d Br (K \rightarrow ev $_{V}$) / dx **2)** ChPT at O(p⁶): 25-IB $f_V \approx 0.082(1 + \lambda(1 - x))$ SD 20 $f_{A} \approx 0.034$ V linear x dependence $(\lambda \approx 0.4)$ 15-10-Ametller, Bijnens, Bramon, Cornet 93 Geng, Ho, Wu 04 5. Chen, Geng, Lih 08 0 **3)** LFQM: 0.8 1.0 0.0 0.2 0.4 0.6 $x = 2E_{\gamma}/M_{K}$ non trivial x dependence $f_{V} = f_{A} = 0$ at x=0

Chen, Geng, Lih 08

Ke2y selection

- Same selection criteria as for Ke2, but a tighter PID cut, NN>0.98
- A photon is required with energy $E_{\gamma}^{calo} > 20$ MeV to reject bkg (we loose Ke2_{IB}, too)
- Time of arrival compatible with that of the event (electron):

$$\Delta t_{\gamma e} = \left(t_{\gamma} - r_{\gamma} / c \right) - \left(t_{e} - r_{e} / c \right) < 2\sigma_{(r)}$$

(r = distance from K decay vtx)

Ke2 at KLOE and KLOE-2 – B. Sciascia – HQL10, Frascati

Ke2y selection

We measure Ke2 γ (E γ >10 MeV, cos $\theta_{e\gamma}$ *<0.9, p_e>200 MeV) => SD+ amplitude

K_{e2y} photon association

Perform 2-dimensional binned likelihood fit in $(M_{\ell}^2, \Delta E_{\gamma}/\sigma)$ plane, in 5 bins of E_{γ}^*

K_{e2y} fit results

Projections on $\Delta E_{\gamma}/\sigma$ axis for all 5 E_{γ}^{*} bins, with cuts on M_{ℓ}^{2}

	E_{γ} (MeV)	10 to 50	50 to 100	100 to 150	150 to 200	200 to 250
,	Signal counts	55 ± 16	219 ± 24	463 ± 32	494 ± 38	253 ± 26
	χ^2/ndf	80/66	141/105	87/106	100/106	116/102

Ke2 at KLOE and KLOE-2 - B. Sciascia - HQL10, Frascati

Ke2γ spectrum vs ChPT O(p⁴)

 E_{γ} spectrum measured for the first time We measure:

This confirm the SD content of our MC, evaluated with ChPT O(p⁴), within an accuracy of 4.6% and allows a 0.2% systematic error on Ke2_{IB} to be assessed

Ke2y spectrum: fit to ChPT O(p⁶)

• We fit our data to extract $f_V + f_A$ (SD+), allowing for a slope of the vector ff:

 $\mathbf{f}_{\mathrm{V}} = \mathbf{f}_{\mathrm{V0}} \left(1 + \boldsymbol{\lambda} \left(1 - \mathbf{x} \right) \right)$

Compare to χ PT O(p⁶) : $f_{V0}+f_A \approx 0.116$, $\lambda \approx 0.4$ [Phys. Rev. D77 (2008) 014004]

Confirm at $\sim 2\sigma$ the presence of a slope in the vector form factor

Conclusions and...

• Using 2.2 fb⁻¹ of data acquired at the ϕ peak, KLOE measured: $R_{K} = (2.493 \pm 0.025_{stat} \pm 0.019_{syst}) \times 10^{-5}$

• This results confirms the SM prediction within its 1.3% accuracy

• Can contribute to set constraints on the parameter space of MSSM with LFV.

The differential decay width for Ke2γ as a function of E_γ measured for the first time.
SD width in agreement with ChPT expectations and indications of the presence of O(e²p⁶) contributions.

• Using 2.2 fb⁻¹ of data acquired at the ϕ peak, KLOE measured: $R_{K} = (2.493 \pm 0.025_{stat} \pm 0.019_{syst}) \times 10^{-5}$

- KLOE δR_K is dominated by the Ke2 event counting and by the control samples statistics: results can improve with the larger data samples foreseen for the oncoming KLOE-2 run.
- With same analysis strategy, 25 fb⁻¹ translate into 0.6% fractional accuracy on R_K .
- Inner Tracker can allow for better performance on K tracking: higher efficiency of Kl2 event selection.

Main actors (experiments) in the challenge to push down precision on R_K :

NA48/2: preliminary result with 2003 data: $R_K = 2.416(43)_{stat}(24)_{syst}10^{-5}$, from ~4000 Ke2 candidates (2% accuracy) NA48/2: preliminary result with 2004 data: $R_K = 2.455(45)_{stat}(41)_{syst}10^{-5}$, from ~4000 Ke2 candidates from special minimum bias run (3% accuracy)

KLOE: preliminary result with 2001-2005 data: $R_{K}=2.55(5)_{stat}(5)_{syst}10^{-5}$, from ~8000 Ke2 candidates (3% accuracy), perspectives to reach 1% error after analysis completion.

NA62 (ex NA48): **collected** ~**150,000 Ke2** events in dedicated 2007 run, aims to breaking the 1% precision wall, possibly reaching <~0.5%

With a 3-parameter fit (V_{us} from Kl3, V_{us}/V_{ud} from Kµ2, V_{ud}) with 1 constraint: [V_{us} (K_{l3})]²+[V_{ud} (0⁺ \rightarrow 0⁺)]²+[V_{ub}]² = 1, obtains (χ^2 /ndf=0.0003/1 P=99\%, ρ = -0.55):

FlaviaNet Kaon WG report – B. Sciascia – CKM 2010 University of Warwick

R_K: sensitivity to new physics

Sensitivity shown as 95% CL excluded regions in the tan β -M_H plane, for different values of the LFV effective coupling, $\Delta_{13} = 10^{-3}$, 5×10⁻⁴, 10⁻⁴

Results for R_K: KLOE vs NA62

	KLOE	NA62 (2010)				
Ke2's on	30k	150k				
tape						
Kinematic rejection	10 ³ at ε≈60%	10 ³ -1, p _{lep} in 13-65 GeV		PDG'08	-	— June'10 averag
e/µ	10 ³	3-1.5 10 ⁵ , p _{lep}		•		Clark et al. (*
rejection		in 13-65 GeV				Heard et al. (
Bkg to Ke2	16%	6%				
Ke2y (SD)	Include as bkg	Suppress in			•	Heintze et al
	Dedicated meas.	analysis		_		KLOE (2009
Ke2 counts	14k	60k				
$R_K \times 10^5$	2.493(25)(19)	2.486(11)(7)			•	NA62 (2010) partial data set
Total error	1.3%	0.52%		SM		
Status	Published	Preliminary	2.3	2.4	2.5	2.6 2.7

Charged kaon at KLOE

φ decay at rest provides pure kaon beams of know momentum

 $p_{K} \sim 100 \text{ MeV}$ $\lambda \sim 90 \text{ cm} (56\% \text{ of } \text{K}^{\pm} \text{ decay in DC}).$

Kaon momentum measured (event by event) with 1 MeV resolution in DC.

Constraints from ϕ 2-body decay.

Particle ID with kinematics and ToF.

Tagging provides unbiased control samples for efficiency measurement.

Kµ2 event counting

Fit to M^2_{lept} distribution: 300 million Kµ2 events per charge Background under the peak <0.1%, from MC

Background composition: K μ 2 events with bad p_K , p_{lep} , or decay vertex position reconstruction

- require good quality vertex and secondary track (χ^2 cut);
- reduce $K_{\mu 2}$ tails cutting on the error on M^2_{lep} expected from track parameters;

• quality cuts for K: the kinematic of $\phi \rightarrow K^+K^-$ 2-body decay allows redundant p_K determination.

Control samples for tracking efficiencies

Just an example: selection of K⁺e3 control sample to measure tracking efficiency for electrons

0) Tagging decay (K μ 2 or K π 2);

1) Tagging decay (K μ 2 or K π 2): reconstruction of the opposite charge kaon flight path;

2) Using a ToF technique a $\pi^0 \rightarrow \gamma \gamma$ decay vertex is reconstructed along the K decay path;

3) Require an electron cluster: p_e estimated from a kinematic fit with constraints on E/p, ToF, cluster position, and $E_{miss} - P_{miss}$.

Evaluate the K + electron kink reconstruction efficiency

Control samples for tracking efficiencies

NN details

1) E/P;

2) 1st momentum of the distribution of the longitudinal energy path deposition (cluster centroid depth) evaluated at cell level;

3) the 3td momentum of the longitudinal energy path deposistion (skewness);

4,5) asymmetry of energy lost in first two innermost (outermost) planes;

- 6) RMS of energy plane distribution;
- 7) energy lost in the 1st plane;
- 8) number of the plane with larges energy deposition;
- 9) largest energy deposition in a single plane;
- 10) slope of the E_int(x) energy distribution;
- 11) curvature of the E_int(x) energy distribution;
- 12) de/dx i.e. value of $E_int(x)/x|x<15$ cm

Additional separation using ToF information: difference δ T of the time measured in the EMC with that expected from the DC measurements in electron mass hypothesis has been included in the final version of the NN: 12-25-20-1 becomes 13-25-20-1

NN input distributions: some example

Ke2 at KLOE and KLOE-2 - B. Sciascia - HQL10, Frascati

Systematics and checks

Cross-check on efficiencies: use same algorithms to measure $R_{13} = \Gamma(Ke3)/\Gamma(K\mu3)$

$R_{13} =$	$= 1.507 \pm 0.0$	05	for	K^+
$R_{13} =$	$= 1.510 \pm 0.0$	06	for	K^{-}

SM expectation (FlaviaNet) $R_{13} = 1.506 \pm 0.003$

Summary of systematics:

Tracking	0.6%	K ⁺ control samples
Trigger	0.4%	downscaled events
syst on Ke2 counts	0.3%	fit stability
Ke2γ DE component	0.2%	measurement on data
Clustering for e. μ	0.2%	K ₊ control samples
Total Syst	0.8% (0.6% fi	rom statistics of control same

Distributions for Ke2 *y* **decay**

For Ke2 γ generator, the IB component is described with χ_{PT} at O(e²p²) including resummation of leading logaritms, while DE component is described with χ_{PT} at O(e²p⁴).

Ke2y process

Dalitz density: $x = 2E_{\gamma}/M_{K} \quad y = 2E_{e}/M_{K}$ $E_{\gamma}, E_{e} \text{ in the K rest frame}$ $\frac{d\Gamma(K \rightarrow e\nu\gamma)}{dxdy} = \rho_{IB}(x,y) + \rho_{SD}(x,y) + \rho_{INT}(x,y)$ $\frac{d\Gamma(K \rightarrow e\nu\gamma)}{dxdy} = \rho_{IB}(x,y) + \rho_{SD}(x,y) + \rho_{INT}(x,y)$ $\frac{d\Gamma(K \rightarrow e\nu\gamma)}{dxdy} = \rho_{IB}(x,y) + \rho_{SD}(x,y) + \rho_{INT}(x,y)$

Structure Dependent $f_{V,} f_{A} : \text{effective vector}$ and axial couplings $\rho_{SD}(x,y) = \frac{G_{F}^{2} |V_{us}|^{2} \alpha}{64\pi^{2}} M_{K}^{5} \left((f_{V} + f_{A})^{2} f_{SD+}(x,y) + (f_{V} - f_{A})^{2} f_{SD-}(x,y) \right)$

SD+ = V+A (γ polarization +): $f_{DE^+}(x, y) = (x + y - 1)^2(1 - x),$ SD- = V-A (γ polarization -): $f_{DE^-}(x, y) = (1 - y)^2(1 - x).$

K_{e2y} fit results

E_{γ} (MeV)	10 to 50	50 to 100	100 to 150	150 to 200	200 to 250
Signal counts	55 ± 16	219 ± 24	463 ± 32	494 ± 38	253 ± 26
χ^2/ndf	80/66	141/105	87/106	100/106	116/102

MC kinematics for samples in K_{e2v} fit

Ke2 at KLOE and KLOE-2 – B. Sciascia – HQL10, Frascati

K_{e2y} spectrum vs LFQM

Light Front Quark Model with parameters as in Chen, Geng, Lih, '08

Excluded by our data $\chi^2 = 127/5$

KLOE-2 Step 0

Roll-in (Dec 2009) and alignment (Jan 2010): done Detector ready for resume data taking.

Minimal **detector** upgrade: tagger for $\gamma\gamma$ physics: detect off-momentum e[±] from e +e⁻ \rightarrow e⁺e⁻ $\gamma^*\gamma^* \rightarrow$ e⁺e⁻X (where X= $\pi\pi$, π^0 , or η) Low Energy Tagger (E_e=130-230 MeV) High Energy Tagger (E_e>400 MeV).

KLOE-2 Step 1

Luminosity goal > 20fb⁻¹.

Major detector upgrade;

Inner tracker (IT) between the beam pipe and the DC: 4 layers of cylindrical triple GEM; improve vertex reconstruction efficiency near IP; increase acceptance for low momentum tracks.

QCALT: W plus scintillating tiles, readout by SiPM via WLS fibers CCAL: LYSO crystals + APD, close to IP to increase the acceptance for photons coming from the IP (θ_{MIN} from 21° to 9°)

Installation: late in 2011

