Heavy Quarks and Leptons 2010, LNF, October 11 ${ }^{\text {th }} 2010$

Inclusive $\left|\mathbf{V}_{\mathrm{ub}}\right|$ from BaBar and Belle

Nicola Gagliardi

On behalf of the BaBar Collaboration

Outline

-Motivation:

- Semileptonic decays and Inclusive $B \rightarrow X_{u} l v$ theory;
-Inclusive $\mathbf{B} \rightarrow \mathrm{X}_{\mathrm{u}} \mathbf{l v}$:
- $\left|\mathrm{V}_{\mathrm{ub}}\right|$ measurements with endpoint method;
$-\left|\mathrm{V}_{\mathrm{ub}}\right|$ measurements with hadronic tag;
- New BaBar recoil analysis;
- Belle multivariate analysis;
- Weak Annihilation in $\mathrm{B} \rightarrow \mathrm{X}_{\mathrm{u}}$ lv decays;

-Conclusions.

Motivation

$V_{C K M}^{+} V_{C K M}=1$

Unitarity Triangle

Left side of the triangle: $\quad\left|\frac{V_{u d} V_{u b}^{*}}{V_{c d} V_{c b}^{*}}\right|=\left|\frac{V_{u b}}{V_{c b}}\right| \frac{1}{\tan \left(\theta_{C}\right)}$
$\left|\frac{\delta V_{c b}}{V_{c b}}\right|=2 \% \quad\left|\frac{\delta V_{u b}}{V_{u b}}\right|=9 \% \longrightarrow$ Improve $\mathbf{V}_{\mathbf{u b}}$ measurements $_{3}$

Semileptonic B decays

Semileptonic tree-level B decays provide the cleanest environment to study V_{ub} and V_{cb}

- Simple description at parton level
- Leptonic and hadronic current decoupled
- Understanding the QCD dynamics is crucial to extract informations on weak interactions

Inclusive B $\rightarrow \mathrm{X}_{\mathrm{U}}$ Iv

$\Gamma\left(\bar{B} \rightarrow X_{u} l \bar{v}\right)=\frac{G_{F}^{2}\left|V_{u b}\right|^{2} m_{b}^{5}}{4192 \pi^{3}}\left[1+O\left(\alpha_{S}\right)+O\left(1 / m_{b}^{2}\right)+H . C.\right] \quad O P E \sim 5 \%$
free quark decay perturbative correction non perturbative correction
$\frac{B(b \rightarrow u l v)}{B(b \rightarrow c l v)} \approx \frac{\left|V_{u b}\right|^{2}}{\left|V_{c b}\right|^{2}} \approx \frac{1}{50}$
$-\mathrm{m}_{\mathrm{u}}$ « m_{c} different kinematics -measure $\Delta B\left(\mathrm{~B} \rightarrow \mathrm{X}_{\mathrm{u}} \mathrm{lv}\right)$ in a region where the
 S / N is good and the $\Delta \Gamma_{\mathrm{u}}$ is reliably calculable (exclude $\mathrm{b} \rightarrow \mathrm{clv}$ decays)
-OPE convergence is compromised ($\mathrm{O}\left(1 / \mathrm{m}_{2}\right)$)
$\Delta B\left(B \rightarrow X_{u} \ell \nu\right)=\tau_{B}\left|V_{u b}\right|^{2} \zeta_{c}$ "theoretical acceptances are sensitive to b quark motion (Fermi motion) parametrizated by Shape Function. Detailed shape not know, in particular the tail but mean and r.m.s constrained ($\mathrm{B} \rightarrow \mathrm{X}_{\mathrm{c}} \mathrm{l}$ 和 $\mathrm{B} \rightarrow \mathrm{X}_{\mathrm{s}} \gamma$ moments).

$\mathrm{B} \rightarrow \mathrm{X}_{\mathrm{u}} \mathrm{lv}$ theory: Shape Function

The shape function is a universal property of the B mesons It depends on two parameters: m_{b} and μ_{π}^{2}

Exploiting all the large dataset collected by B-factories and the recently $\mathbf{V}_{c b}$ knowledge improvements $\left(B \rightarrow D, D^{*}, D^{* *}\right)$

 is possible try to perform a full-phase space anallysis in order to reduce the theoretical error at level of 5%
Endpoint method

Subtract offpeak data scaled to on peak luminosity bin-by-bin; Fit MC to data in low energy region to constrain $B \rightarrow X_{c} l v$ from data

$$
\begin{gathered}
\mathrm{B} \rightarrow \mathrm{Xulv}, \mathrm{~B} \rightarrow \mathrm{Dlv}+\mathrm{B} \rightarrow \mathrm{D}^{*} \mathrm{I} v \\
(\text { ratio fixed) } \\
\mathrm{B} \rightarrow \mathrm{D}^{* *} \mathrm{lv}, \mathrm{~B} \rightarrow \mathrm{D}^{(*)} \pi \mathrm{lv}
\end{gathered}
$$

$$
\begin{aligned}
& \mathrm{B} \rightarrow \text { Xuln, } \mathrm{B} \rightarrow \mathrm{Dlv}+\mathrm{B} \rightarrow \mathrm{D}^{*} l v \\
& \left(\mathrm{D} / \mathrm{D}^{*}\right. \text { fixed) } \\
& \mathrm{B} \rightarrow \mathrm{D}^{* *} \operatorname{lv} \quad \mathrm{D}^{* *} / \mathrm{D}+\mathrm{D}^{*} \text { fitted }
\end{aligned}
$$

Simultaneous fit for non- $B B$, $\mathrm{B} \rightarrow$ Xulv, $\mathrm{B} \rightarrow \mathrm{Dlv}, \mathrm{B} \rightarrow \mathrm{D}^{*} l v, \mathrm{~B} \rightarrow \mathrm{D}^{* *} \mathrm{lv}$, $B \rightarrow D^{(*)} \pi l v$, other background

		Ecut	$\Delta \mathbf{B R} \times 10^{-4}$
PRL 88, 231803, 2002	CLEO	$2.2-2.6$	$2,30 \pm 0,15_{\text {stat }} \pm 0,35_{\text {sys }}$
PRD 73, 012006, 2006	BaBar	$2.0-2.6$	$5,72 \pm 0,41_{\text {stat }} \pm 0,65_{\text {sys }}$
PLB 621, 28, 2005	Belle	$1.9-2.6$	$8,5 \pm 0,4_{\text {stat }} \pm 1,5_{\text {sys }}$

Improved Endpoint method: v reconstruction

\rightarrow Separate $\mathrm{b} \rightarrow \mathrm{clv}$ background by using: $s_{h}^{\max }=m_{B}^{2}+q^{2}-2 \mathrm{~m}_{B}\left(E_{e}+\frac{q^{2}}{4} E_{e}\right)$
$\rightarrow S / B \sim 1 / 2, \varepsilon \sim 25 \%$
$80 \mathrm{fb}^{-1}$

$\Delta B(2.0-3.5)=\left(4.41 \pm 0.42_{\text {sata }} \pm 0.42_{\text {sys }}\right) \times 10^{-4}$

Inclusive $\left|\mathbf{V}_{\mathrm{ub}}\right|$ with hadronic tag

One B fully reconstructed:

$$
B \rightarrow D^{(*)} Y
$$

$$
Y=n \pi+m \pi^{0}+p K_{S}+q K
$$

Study the $\rightarrow P_{\text {miss }}=P_{Y(4 \mathrm{~s})}-P_{\text {Reco }}-P_{X}-P_{l}$
recoiling $\mathbf{B} \rightarrow m_{x}$: all remaining particles

$$
\begin{aligned}
m_{E S} & =\sqrt{s / 4-\vec{p}_{B}^{2}} \\
\Delta E & =E_{B}-\sqrt{s} / 2
\end{aligned}
$$

Experimental resolution leads to irreducible $\mathrm{b} \rightarrow \mathrm{clv}$ contamination ${ }_{9}$

New BaBar recoil analysis

-Update of Phys. Rev. Lett. 100 (2008) 171802 on the full BaBar dataset ($426 \mathrm{fb}^{-1}$);
-Improved $\mathrm{B}_{\text {reco }}$ section and better treatment of the systematics;
-More region of phase space analyzed;
-Result also for charged and neutral B separately (WA limits);
-Select three sample on the recoil side:

(1) Semileptonic selection (for normalization)	At least one lepton $p_{\ell}^{*}>1.0 \mathrm{GeV} / c$
(2) $\bar{B} \rightarrow X_{u} \ell \bar{\nu}$ signal	
enhanced selection	Only one lepton 2
	$m_{\text {miss }}<0.5 \mathrm{GeV}^{2} / c^{4}$ (Charge) $Q_{\mathrm{B}_{\text {reco }}}+Q_{\mathrm{B}_{\text {recoil }}}=0$ $Q_{B_{\text {recoil }} Q_{\ell}>0\left(\text { only for } B^{ \pm}\right)}$ Veto events with partially reconstructed $D^{*} \ell^{\mp} \bar{\nu}$ Veto events with kaons in the $B_{\text {recoil }}$
(3) $\bar{B} \rightarrow X_{u} \ell \bar{\nu}$ signal	
depleted selection	Selection (2) without kaon veto,
and partial $D^{*} \ell^{\mp} \bar{\nu}$ veto	

Data/MC agreement

Extraction of signal Yields

-Fit the distribution of different kinematic variables in several regions of phase space:

$$
\begin{aligned}
& \text { is } M_{X}<1.55 \mathrm{GeV} / \mathrm{c}^{2} \\
& M_{X}<1.70 \mathrm{GeV} / \mathrm{c}^{2} \\
& P_{+}<0.66 \mathrm{GeV} / \mathrm{c}
\end{aligned}
$$

$\hbar M_{X}<1.70 \mathrm{GeV} / \mathrm{c}^{2}, q^{2}>8 \mathrm{GeV}^{2} / \mathrm{c}^{4}$
动 $M_{X}, q^{2} p_{l}>1 \mathrm{GeV} / c$
ts $p_{l}, p_{l}>1.0-2.3 \mathrm{GeV} / \mathrm{c}$
-Subtract the combinatorial background by fitting m_{ES} distribution in each bin; -Signal yield extracted with a χ^{2} shape fit;
-Reweighted SL decays into Pwave D meson by using the signal-depleted sample:
${ }^{\circ}$ Fit quality improve;
$\checkmark \mathrm{N}_{\mathrm{D}^{* *}} /\left(\mathrm{N}_{\mathrm{D}}+\mathrm{N}_{\mathrm{D}^{*}}+\mathrm{N}_{\mathrm{D}^{* *}}\right)$ smaller in data then MC ;
-Normalized to semileptonic sample in order to reduce experimental systematic uncertainty:

$$
\Delta R_{u / s l} \times(10.66 \pm 0.15) \%
$$

$$
\Delta R_{u / s l}=\frac{\left(N_{u}^{\text {fit }}\right) /\left(\epsilon_{s e l}^{u} \epsilon_{k i n}^{u}\right)}{N_{S L}^{\text {meas }}-B G_{s l}} \times \frac{\epsilon_{l}^{s l} \epsilon_{t}^{s l}}{\epsilon_{l}^{u} \epsilon_{t}^{u}}
$$

$$
\Delta B\left(\bar{B} \rightarrow \stackrel{\vee}{X}{ }_{u} l \bar{v}\right)
$$

New BaBar recoil analysis: results

New BaBar recoil analysis: uncertainties

	Babar preliminary						Belle
Source $\sigma\left(\Delta \mathcal{B}\left(B \rightarrow X_{u} \ell \nu\right)\right)$	$\begin{gathered} M_{X}<1.55 \\ \mathrm{GeV} / c^{2} \\ \hline \end{gathered}$	$\begin{gathered} M_{X}<1.70 \\ \mathrm{GeV} / c^{2} \\ \hline \end{gathered}$	$\begin{gathered} P_{+}<0.66 \\ \mathrm{GeV} \end{gathered}$	$\begin{aligned} M_{X} & <1.70 \mathrm{GeV} / c_{1} \\ q^{2} & >8 \mathrm{GeV}^{2} / \mathrm{c}^{4} \end{aligned}$	$\left\lvert\, \begin{gathered} \left(M_{X}, q^{2}\right) \\ p_{\ell}^{*}>1.0 \mathrm{GeV} / c \end{gathered}\right.$	$\begin{gathered} p_{e}^{*}>1.3 \\ \mathrm{GeV} / c \end{gathered}$	$\begin{gathered} \hline p_{e}^{e}>1.0 \\ \mathrm{GeV} / c \\ \hline \end{gathered}$
Statistical	7.1	8.9	8.9	8.0	7.1	8.9	
MC statistics	1.3	1.3	1.3	1.6	1.1	1.2	
Detector-related	2.8	3.7	5.5	4.1	3.2	2.7	3.3
Fit-related	2.7	4.9	3.2	3.2	2.1	2.5	3.6
Signal model	2.7	3.0	3.5	1.9	6.6	7.9	6.3
Background model	2.0	2.6	3.4	2.8	2.8	2.2	1.7
Total syst	5.2	6.3	8.1	6.2	8.1	9.0	8.1
Total error	8.9	11.0	12.1	10.3	10.8	12.7	12.0

-Statistical error: 7-9\%;
-Systematic uncertainty dominated by signal model in the most inclusive analysis;

- Total uncertainties: $9-13 \% \longrightarrow 4-6 \%$ on $\left|\mathrm{V}_{\mathrm{ub}}\right|$.

Belle recoil analysis

The irreducible uncertainties in the measurements to date are related to limited phase space:

- exploit the many non-linear correlation between kinematic and event variables available in B-beam sample that separate $b \rightarrow u$ and $b \rightarrow c$.
- Boosted decision tree based selection, use ~ 20 event parameters from the full reconstruction sample

No need to place stringent, hard cuts that result in zero efficiency!

- Signal side: reconsruct high momentum lepton ($\mathrm{p}_{\mathrm{cns}}>1 \mathrm{GeV} / \mathrm{c}$);
- Event Level: $\mathrm{Q}\left(\mathrm{B}^{+}{ }_{\text {reoo }}\right) \times \mathrm{Q}($ lepton $)=-1$;
\checkmark BDT cut with many input parameters: $\mathrm{M}_{\text {miss }}^{2}, \mathrm{Q}_{\text {total }}, \mathrm{Q}_{\text {lepton }}, \mathrm{N}_{\text {lepton }}, \mathrm{Q}(\mathrm{B}), \mathrm{D}^{*}$ partial reconstruction etc...;
- 2D fit to $\mathbf{M}_{\mathbf{X}}, \mathbf{q}^{2}$ with background and signal floated to determine background yield;
Measure absolute rate.

PRL 104:021801 (2010)

Belle recoil analysis: results

$$
\Delta B\left(B \rightarrow X_{u} l \mathcal{v} ; p_{l}>1.0 \mathrm{GeV}\right)=1.963 \times\left(1 \pm 0.088_{\text {stat }} \pm 0.081_{\text {syst }}\right) \times 10^{-3}
$$

| $\mathbf{V}_{\mathrm{ub}} \mid$ results (HFAG average, GGOU)

$$
2
$$

Gambino, Giordano, Ossola, Uraltsev JHEP0710:058(2007)

$$
\left|V_{u b}\right|=\sqrt{\frac{\Delta B\left(B \rightarrow X_{u} l v\right)}{\Gamma_{t h v} \cdot \tau_{B}}}
$$

-Acceptances provided by many different theoretical models; -Many $\left|\mathrm{V}_{\mathrm{ub}}\right|$ values.
$\left|V_{u b}\right|=(4.30 \pm 0.16+0.13-0.20) \times 10^{-3}$

$\delta \mid$ Vub \mid	$+4.9 \%-6.3 \%$
Statistical	2.3%
Exp.systematics	1.9%
$b \rightarrow c \ell \mathcal{V}$ model	1.2%
$b \rightarrow \mathbf{\ell} \mathcal{V}$ model	1.6%
Non pert.-	1.5%
Higher order par.	2.5%
q^{2} tail model	1.7%
Weak Annihilation	-3.9%

$\left|\mathbf{V}_{\text {ub }}\right|$ results (different theoretical models)

Result vary from 4.05×10^{-3} (ADFR) to 4.37×10^{-3} (DGE)

HFAG Ave. (BLNP) $4.30 \pm 0.16_{\text {exp }}+0.21_{\text {theo }}-0.23_{\text {theo }}$

HFAG Ave. (DGE) $4.37 \pm 0.15_{\text {exp }}+0.17_{\text {theo }}-0.16_{\text {theo }}$

HFAG Ave. (GGOU) $4.30 \pm 0.16_{\text {exp }}+0.13_{\text {theo }}-0.20_{\text {theo }}$

HFAG Ave. (ADFR) $4.05 \pm \mathbf{0 . 1 3}_{\text {exp }} \mathbf{+} \mathbf{0 . 2 4}_{\text {theo }}-\mathbf{0 . 2 1}_{\text {theo }} \longmapsto \longrightarrow$ see backup slides for more information $\left|V_{u b}\right| \times 10^{-3}$ $3.80 \quad 4.30 \quad 4.80$ - The $\left|\mathrm{V}_{\mathrm{ub}}\right|$ values consistent within one σ of each other, and also consistent within one σ of previous measurements; "Obtained the most precise determination from the analysis based on the two dimensional fit on M_{X} and q^{2} plane with no cuts other than $\mathrm{p}_{\text {lep }}>1 \mathrm{GeV} / \mathrm{c}$: the total uncertainty is comparable between BaBar and Belle.

Limits on Weak Annihilation effects

- Weak Annihilation (WA) could cause differences in the BFs for B^{+}and B^{0} mesons leading to an asymmetry that may effect $\left|\mathrm{V}_{\mathrm{ub}}\right|$;
- Use BFs for B^{0} and B^{+}to set a limit on the size of the WA in B^{+}decays;

$$
\frac{\gamma_{W A}}{\Gamma}=\frac{f_{u}}{f_{W A}} \cdot\left(\frac{R_{u / s l}^{ \pm}}{R_{u / s l}^{0}}-1\right)
$$

$\frac{\gamma_{W A}}{\Gamma}=\frac{f_{u}}{f_{W A}} \cdot\left(\frac{R_{u / s l}}{R_{u / s l}^{0}}-1\right)$	
	$R^{+/ 0}-1$
$M_{X} \leq 1.70, q^{2} \geq 8$	$0.042 \pm 0.066 \pm 0.009$
$M_{x} \leq 1.55$	$-0.07 \leq \gamma_{W A} / \Gamma \leq 0.15$
$M_{X} \leq 1.70$	$-0.02 \pm 0.066 \pm 0.003$
$\left(M_{X}, q^{2}\right) p_{\ell}^{*}>1.0$	$-0.13 \leq \gamma_{W A} / \Gamma \leq 0.09$

Other results:

$$
\begin{aligned}
& \text { CLEO, studing the } q^{2} \text { spectra } \\
& \quad \text { PRL 96,12801 (2006) } \\
& \frac{\left|\Gamma_{W A}\right|}{\Gamma_{u}}<7.4 \% @ 90 \% \text { C.L. }
\end{aligned}
$$

BaBar ArXiv: 0808.1753 383 M BB

$$
\frac{\left|\Gamma_{W A}\right|}{\Gamma_{u}}<\frac{3.8 \%}{f_{W A}(2.3-2.6)} @ 90 \% C . L .
$$

Conclusions

- Determination of $\left|\mathrm{V}_{\mathrm{ub}}\right|$ is crucial to over-constraint UT;
- Inclusive $\left|\mathrm{V}_{\mathrm{ub}}\right|$ determinations for different calculations give similar theory uncertainty;
- Total uncertainty on inclusive $\left|\mathrm{V}_{\mathrm{ub}}\right|$ determinations at the 6% level, dominated by parametric errors (e.g. about 4% from m_{b});
- NNLO calculations not included: sizable impact on BLNP model;
- With the hadronic tag method we set a limit on the size of WA $<9 \%$ at 90% C.L.

Backup slides

The B factories

Integrated Luminosity(cal)

$\left|\mathbf{V}_{\mathrm{ub}}\right|$ extraction from BLNP


```
CLEO (E)
4.00\pm0.47 \pm0.34
BELLE sim. ann. (m
4.39\pm0.46+0.31-0.29
BELLE (E)
4.81\pm0.45+0.32-0.29
BABAR (E E
4.35\pm0.25+0.31-0.30
BABAR (E , s
4.48士0.30+0.39-0.37
BELLE multivatiate (p*)
4.45\pm0.27+0.24-0.21
BABAR (m
4.03\pm0.19+0.28-0.26
BABAR (m) <1.7)
3.92\pm0.22+0.25-0.23
BABAR (m}\mp@subsup{\textrm{x}}{}{-\mp@subsup{q}{}{2}}
4.22\pm0.22+0.30-0.28
BABAR (P')
3.90\pm0.24+0.28-0.26
BABAR ((m
4.27\pm0.24+0.23-0.20
BABAR (p*>1.3GeV)
4.22\pm0.27+0.23-0.21
Average +/- exp + theory - theory
4.30\pm0.16+0.21-0.23
z
Sasch, Lange.Neubert and Paz (BLNP)
\begin{tabular}{cccc}
1 & 1 & & CKM2010 \\
\hline 2 & 4 & & 6 \\
& & \(\left|\mathrm{~V}_{\ldots \mathrm{L}}\right|\left[\times 10^{-3}\right]\)
\end{tabular}
```


Error budget:

$$
\begin{aligned}
& +2.2_{\text {stat }}+1.7_{\text {exp }}+1.2_{\text {be } 2 \text { model }}+1.9_{\text {bu model }}+2.9_{\text {HOE aram }}+0.4_{\text {sF func }}+0.6_{\text {sub }}+1.2_{\mathrm{WA}}+3.7_{\text {matching }}=+6.1_{\text {tot }} \\
& -2.3_{\text {stat }}-1.7_{\text {exp }}-1.2_{\text {bic model }}-1.9_{\mathrm{b} 2 \mathrm{u} \text { model }}-3.4_{\text {HOE pram }}-0.5_{\mathrm{sF} \text { fund }}-0.7_{\text {sub SF }}-1.2_{\mathrm{WA}}-3.7_{\text {matching }}=-6.4_{\text {too }}
\end{aligned}
$$

$\left|\mathbf{V}_{\mathrm{ub}}\right|$ extraction from DGE

Error budget:

$\left|\mathbf{V}_{\mathrm{ub}}\right|$ extraction from ADFR


```
CLEO (E )
3.47\pm0.41+0.21-0.22
BELLE sim. ann. (m
3.94\pm0.41+0.23-0.24
BELLE (E)
4.53\pm0.42 \pm0.27
BABAR (E)
3.98\pm0.27+0.24-0.25
BABAR (E , s'm
3.87\pm0.26\pm0.24
BELLE multivariate (p*)
4.55\pm0.30\pm0.27
BABAR (m < < % .55)
3.86+0.18+0.24-0.25
BABAR (m}<<1.7
3.78\pm0.21+0.23-0.24
BABAR (m}<1.7,\mp@subsup{q}{}{2>}>8
3.78\pm0.20\pm0.23
BABAR ( }\mp@subsup{\textrm{P}}{}{+}<0.66
3.60\pm0.22+0.23-0.24
BABAR ((m
4.34\pm0.24\pm0.15
BABAR (p*>1.3)
4.28\pm0.27+0.26-0.25
Average +/- exp + theory - theory
4.05\pm0.13+0.24-0.21
\(\chi^{2} /\) dof \(=28.2 / 11(C L=0.30 \%)\)
U.Aglietti, F.Di Lodovico, G.Ferrera, G.Ricciardi (ADFR) [axXiv:0711.086q], and references therein
```



```
2
```

Error budget:

$$
\begin{aligned}
& +1.9_{\text {stat }}+1.8_{\text {exp }}+1.3_{\text {b2c model }}+1.2_{\text {b2u model }}+0.7_{\text {alpha_s }}+1.7_{\mathrm{vcb}}+0.7_{\mathrm{mb}}+4.4_{\mathrm{mc}}+1.0_{\mathrm{BF}}+3.2_{\text {model }}=+6.7_{\text {tot }} \\
& -1.9_{\mathrm{stat}}-1.8_{\text {exp }}-1.4_{\mathrm{b} 2 \mathrm{c} \text { model }}-1.3_{\mathrm{b} 2 \mathrm{u} \text { model }}-1.2_{\mathrm{alph}-\mathrm{s}}-1.7_{\mathrm{vcb}}-0.8_{\mathrm{mb}}-4.4_{\mathrm{mc}}-0.9_{\mathrm{BF}}-3.2_{\text {model }}=-6 . \mathrm{t}_{\text {tot }}
\end{aligned}
$$

