Heavy Quarks and Leptons 2010, LNF, October 11th 2010

Inclusive |V_{ub} | from BaBar and Belle

Nicola Gagliardi On behalf of the BaBar Collaboration 1

Outline

Motivation:

- Semileptonic decays and Inclusive $B \rightarrow X_u l v$ theory;

-Inclusive $B \rightarrow X_u lv$:

- \sim |V_{ub} | measurements with endpoint method;
- \sim |V_{ub} | measurements with hadronic tag;
 - New BaBar recoil analysis;
 - > Belle multivariate analysis;
 - > Weak Annihilation in $B \rightarrow X_u lv$ decays;

Conclusions.

Motivation

 $\left|\frac{\delta V_{cb}}{V_{cb}}\right| = 2\% \quad \left|\frac{\delta V_{ub}}{V_{ub}}\right| = 9\% \quad \longrightarrow \text{Improve } V_{ub} \text{ measurements}$

Semileptonic B decays

Semileptonic tree-level B decays provide the cleanest environment to study $V_{ub}\,$ and $V_{cb}\,$

- Simple description at parton level
- Leptonic and hadronic current decoupled
- Understanding the QCD dynamics is crucial to extract informations on weak interactions

Inclusive $B \rightarrow X_u I_v$

$$\Gamma (\bar{B} \rightarrow X_{u} l \bar{\nu}) = \frac{G_{F}^{2} |V_{ub}|^{2} m_{b}^{5}}{(1 + O(\alpha_{s}) + O(1/m_{b}^{2}) + H.C.]} \quad OPE \sim 5\%$$

free quark decay perturbative correction non perturbative correction
$$\frac{B(b \rightarrow u l \nu)}{B(b \rightarrow c l \nu)} \approx \frac{|V_{ub}|^{2}}{|V_{cb}|^{2}} \approx \frac{1}{50} \qquad \text{-m}_{u} \ll \text{different kinematics} \qquad \text{-masure } \Delta B(B \rightarrow X_{u} l \nu) \text{ in a region where the} \text{S/N is good and the } \Delta \Gamma_{u} \text{ is reliably calculable} (exclude b \rightarrow cl \nu decays) \qquad \text{-OPE convergence is compromised (O(1/m_{b}))} \qquad \Delta B(B \rightarrow X_{u} \ell \nu) = \tau_{B} |V_{ub}|^{2} \zeta_{c}$$

theoretical acceptances are sensitive to b quark motion (Fermi motion) parametrizated by Shape Function. Detailed shape not know, in particular the tail but mean and r.m.s constrained (B \rightarrow X_{c} l \nu and B \rightarrow X_{s} \gamma moments).

B→X_uIv theory: Shape Function

The shape function is a universal property of the B mesons It depends on two parameters: m_b^2 and μ_{π}^2

Exploiting all the large dataset collected by B-factories and the recently V_{cb} knowledge improvements (B→D,D*,D**) is possible try to perform a full-phase space analysis in order to reduce the theoretical error at level of 5%

Endpoint method

Improved Endpoint method: v reconstruction

Inclusive |V_{ub} | with hadronic tag

New BaBar recoil analysis

•Update of Phys. Rev. Lett. 100 (2008) 171802 on the full BaBar dataset (426 fb⁻¹);

-Improved B_{reco} section and better treatment of the systematics;

•More region of phase space analyzed;

Result also for charged and neutral B separately (WA limits);Select three sample on the recoil side:

(1) Semileptonic selection	At least one lepton		
(for normalization)	$p_\ell^* > 1.0{ m GeV}/c$		
(2) $\overline{B} ightarrow X_u \ell ar{ u}$ signal	Only one lepton		
enhanced selection	$m_{miss}^2 < 0.5{ m GeV}^2/c^4$		
	(Charge) $Q_{\mathrm{B}_{\mathrm{reco}}} + Q_{\mathrm{B}_{\mathrm{recoil}}} = 0$		
	$\mathit{Q}_{B_{ ext{recoil}}}\mathit{Q}_{\ell} >$ 0 (only for B^{\pm})		
	Veto events with partially reconstructed $D^*\ell^\mpar u$		
	Veto events with kaons in the $B_{ m recoil}$		
(3) $\overline{B} ightarrow X_u \ell \overline{ u}$ signal	Selection (2) without kaon veto,		
depleted selection	and partial $D^*\ell^\mpar u$ veto		

Data/MC agreement

Extraction of signal Yields

•Fit the distribution of different kinematic variables in several regions of phase space:

 $\stackrel{\bigstar}{\longrightarrow} M_X < 1.55 \, GeV/c^2$ $\stackrel{\bigstar}{\longrightarrow} M_X < 1.70 \, GeV/c^2$ $\stackrel{\bigstar}{\longrightarrow} P_+ < 0.66 \, GeV/c$ $\stackrel{\bigstar}{\longrightarrow} M_X < 1.70 \, GeV/c^2, q^2 > 8 \, GeV^2/c^4$ $\stackrel{\bigstar}{\longrightarrow} M_X, q^2 p_l > 1 \, GeV/c$ $\stackrel{\bigstar}{\longrightarrow} p_l, p_l > 1.0 - 2.3 \, GeV/c$

•Subtract the combinatorial background by fitting m_{ES} distribution in each bin; •Signal yield extracted with a χ^2 shape fit; Reweighted SL decays into Pwave D meson by using the signal-depleted sample: ·Fit quality improve; $N_{D^{*}}/(N_{D}+N_{D^{*}}+N_{D^{*}})$ smaller in data then MC;

12

•Normalized to semileptonic sample in order to reduce experimental systematic uncertainty: $\Delta R_{u/sl} \times (10.66 \pm 0.15)\%$ $\Delta R_{u/sl} = \frac{(N_u^{fit})/(\epsilon_{sel}^u \epsilon_{kin}^u)}{N_{sl}^{meas} - BG_{sl}} \times \frac{\epsilon_l^{sl} \epsilon_l^{sl}}{\epsilon_l^u \epsilon_l^u} \qquad \Delta B(\overline{B} \to X_u l \overline{\nu})$

New BaBar recoil analysis: results

	Signal yield	$\Delta {\cal B}(\overline{B} o X_u \ell ar{ u}) \; (10^{-3})$
$M_X < 1.55$	$1033\pm73_{\it stat}$	$1.08\pm0.08_{\it stat}\pm0.06_{\it sys}$
$M_X < 1.70$	$1089\pm82_{\it stat}$	$1.15\pm0.10_{\it stat}\pm0.08_{\it sys}$
$P_{+} < 0.66$	$902\pm80_{\it stat}$	$0.98\pm0.09_{\it stat}\pm0.08_{\it sys}$
$M_X < 1.70$ and $q^2 > 8$	$665\pm53_{\it stat}$	$0.68\pm0.06_{\it stat}\pm0.04_{\it sys}$
$(M_X, q^2), \; p_\ell^* > 1.0$	$1441 \pm 102_{\it stat}$	$1.80\pm0.13_{\it stat}\pm0.15_{\it sys}$
$p_\ell^* > 1.0$	$1462 \pm 137_{\it stat}$	$1.76\pm0.16_{\it stat}\pm0.18_{\it sys}$
$p_\ell^* > 1.3$	$1326\pm118_{\it stat}$	$1.50\pm0.13_{\it stat}\pm0.14_{\it sys}$

New BaBar recoil analysis: uncertainties

	Babar preliminary					Belle	
Source $\sigma(\Delta \mathcal{B}(B \to X_u \ell \nu))$	$\begin{array}{c} M_X < 1.55 \\ \text{GeV}/c^2 \end{array}$	$\frac{M_X < 1.70}{\text{GeV}/c^2}$	$P_+ < 0.66$ GeV	$\begin{aligned} M_X &< 1.70 \text{ GeV}/c, \\ q^2 &> 8 \text{GeV}^2/\text{c}^4 \end{aligned}$	(M_X, q^2) $p_\ell^* > 1.0 \text{ GeV}/c$	$p_{\ell}^* > 1.3$ GeV/c	$p_\ell^* > 1.0$ GeV/ c
Statistical	7.1	8.9	8.9	8.0	7.1	8.9	
MC statistics	1.3	1.3	1.3	1.6	1.1	1.2	8.8
Detector-related	2.8	3.7	5.5	4.1	3.2	2.7	3.3
Fit-related	2.7	4.9	3.2	3.2	2.1	2.5	3.6
Signal model	2.7	3.0	3.5	1.9	6.6	7 .9	6.3
Background model	2.0	2.6	3.4	2.8	2.8	2.2	1.7
Total syst	5.2	6.3	8.1	6.2	8.1	9.0	8.1
Total error	8.9	11.0	12.1	10.3	10.8	12. 7	12.0

•Statistical error: 7-9%;

•Systematic uncertainty dominated by signal model in the most inclusive analysis;

•Total uncertainties: 9-13% \rightarrow 4-6% on $|V_{ub}|$.

Belle recoil analysis

The irreducible uncertainties in the measurements to date are related to limited phase space:

- exploit the many non-linear correlation between kinematic and event variables available in B-beam sample that separate $b \rightarrow u$ and $b \rightarrow c$.
- Boosted decision tree based selection, use ~ 20 event parameters from the full reconstruction sample

No need to place stringent, hard cuts that result in zero efficiency!

- Signal side: reconstruct high momentum lepton (p_{cms} > 1 GeV/c);
- Event Level: $Q(B^+_{reco}) \ge Q(lepton) = -1;$
- BDT cut with many input parameters: M²_{niss}, Q_{total}, Q_{lepton}, N_{lepton}, Q(B), D^{*} partial reconstruction etc...;
- 2D fit to M_X,q² with background and signal floated to determine background yield;
- Measure absolute rate.

Belle recoil analysis: results

 $\Delta B(B \to X_u l \nu; p_l > 1.0 \, GeV) = 1.963 \times (1 \pm 0.088_{stat} \pm 0.081_{syst}) \times 10^{-3}$

|V_{ub} | results (HFAG average, GGOU)

 $|V_{ub}| = \sqrt{\frac{\Delta B (B \rightarrow X_u l v)}{\Gamma_{thy} \cdot \tau_B}}$ •Acceptances provided by many different theoretical models;
•Many |V_{ub}| values.

$|V_{ub}| = (4.30 \pm 0.16 + 0.13 - 0.20) \times 10^{-3}$

δ Vub	+4.9% -6.3%			
Statistical	2.3%			
Exp.systematics	1.9%			
b→c ^ℓ v model	1.2%			
<mark>b→uℓ</mark> v model	1.6%			
Non pert	1.5%			
Higher order par.	2.5%			
q ² tail model	1.7%			
Weak Annihilation	-3.9%			

|V_{ub} | results (different theoretical models)

Result vary from 4.05x10³ (ADFR) to 4.37x10³ (DGE)

HFAG Ave. (BLNP) $4.30 \pm 0.16_{exp} + 0.21_{theo} - 0.23_{theo}$ HFAG Ave. (DGE) $4.37 \pm 0.15_{exp} + 0.17_{theo} - 0.16_{theo}$ HFAG Ave. (GGOU) $4.30 \pm 0.16_{exp} + 0.13_{theo} - 0.20_{theo}$ HFAG Ave. (ADFR) $4.05 \pm 0.13_{exp} + 0.24_{theo} - 0.21_{theo}$ see backup slides for more information $|V_{ub}| \times 10^{-3}$ $3.80 \quad 4.30 \quad 4.80$

•The $|V_{ub}|$ values consistent within one σ of each other, and also consistent within one σ of previous measurements; •Obtained the most precise determination from the analysis based on the two dimensional fit on M_X and q^2 plane with no cuts other than $p_{lep} > 1$ GeV/c: the total uncertainty is comparable between BaBar and Belle.

18

Limits on Weak Annihilation effects

- Weak Annihilation (WA) could cause differences in the BFs for B^+ and B^0 mesons leading to an asymmetry that may effect $|V_{ub}|$;
- Use BFs for B⁰ and B⁺ to set a limit on the size of the WA in B⁺ decays;

 Γ_{u}

Conclusions

- Determination of $|V_{ub}|$ is crucial to over-constraint UT;
- Inclusive |V_{ub} | determinations for different calculations give similar theory uncertainty;
- Total uncertainty on inclusive |V_{ub} | determinations at the 6% level, dominated by parametric errors (e.g. about 4% from m_b);
- NNLO calculations not included: sizable impact on BLNP model;
- With the hadronic tag method we set a limit on the size of WA < 9% at 90% C.L.

Backup slides

The B factories

Integrated Luminosity(cal)

V_{ub} extraction from **BLNP**

Error budget:

V_{ub} extraction from DGE

CLEO (E.) $3.70 \pm 0.43 \pm 0.30 - 0.26$ BELLE sim. ann. (m, q2) $4.30 \pm 0.45 \pm 0.24 = 0.23$ BELLE (E.) 4.66 ± 0.43 + 0.26 - 0.25 BABAR (E_) $4.15 \pm 0.28 \pm 0.28 - 0.25$ BABAR (E_e, s_h^{max}) Preliminar $4.15 \pm 0.28 \pm 0.30$ BELLE multivariate (p) $4.53 \pm 0.27 \pm 0.15$ BABAR (m_x<1.55) $4.23 \pm 0.20 \pm 0.22 - 0.19$ BABAR (m_<1.7) $4.04 \pm 0.22 \pm 0.26 - 0.23$ BABAR ($m_{2} < 1.7, q^{2} > 8$) $4.10 \pm 0.22 \pm 0.23 - 0.22$ BABAR (P*<0.66) $3.93 \pm 0.24 \pm 0.36 - 0.29$ BABAR ((m, -q²) fit, p*>1GeV) $4.34 \pm 0.24 \pm 0.15$ BABAR (p*>1.3GeV) $4.27 \pm 0.27 \pm 0.16$ Average +/- exp + theory - theory 4.37 ± 0.15 + 0.17 - 0.16 χ^{2} (dof = 6.6/8 (CL = 58.00 %) Andersen and Gardi (DGE) JHEP 0601:097,2006 E. Gardi arXiv:0806.4524 HFAG CKM2010 2 4 b $|V_{ub}| [\times 10^{-3}]$ Error budget: $+2.0_{stat} + 1.7_{exp} + 1.2_{b2c model} + 2.0_{b2u model} + 0.4_{alpha_s R_CUT} + 3.5_{mb} + 1.3_{WA} + 0.4_{D GE theory} - 2.0_{stat} - 1.6_{exp} - 1.2_{b2c model} - 1.8_{b2u model} - 0.4_{alpha_s R_CUT} - 3.5_{mb} - 1.3_{WA} - 0.5_{D GE theory} - 0.4_{alpha_s R_CUT} - 0.4_{alpha_s R_CUT} - 0.4_{bcc} + 0.4_{bcc} - 0.4_{bcc} + 0.4_{bcc} - 0.4_{bcc} + 0.4_{bcc}$

∙5.2_{tot}

V_{ub} extraction from ADFR

