Studies of exclusive semileptonic B decays and extraction of |V_\{ub\}| at BaBar

Paul Taras

Université de Montréal
(on behalf of the BaBar collaboration)

Exclusive charmless semileptonic B decays

$$
\begin{gathered}
B^{0} \rightarrow \pi^{-} \ell^{+} v \quad B^{+} \rightarrow \pi^{0} \ell^{+} v \quad B^{+} \rightarrow \eta \ell^{+} v \quad B^{+} \rightarrow \eta^{\prime} \ell^{+} v \\
B^{0} \rightarrow \rho^{-} \ell^{+} v \quad B^{+} \rightarrow \rho^{0} \ell^{+} v
\end{gathered}
$$

In Standard model, quark flavour changes occur through weak interactions via coupling of a W gauge boson

Such couplings are prop. to relevant CKM matrix elements
Probability of a b quark to decay into a u quark is prop. to $\left|V_{u b}\right|^{2}$
Unitarity of CKM matrix represented by triangle in the $\rho-\eta$ complex plane

$\left|V_{u b}\right|$ second poorest known element, its precise measurement would constrain the description of weak interactions and CP violation
$\left|V_{u b}\right|$ results presented at FPCP2010 (Bob Kowaleski)

$$
\begin{gathered}
B \rightarrow \pi \ell v:(2.95 \pm 0.31) \times 10^{-3} \quad \text { (exclusive) } \\
B \rightarrow u \ell v:(4.27 \pm 0.38) \times 10^{-3} \quad \text { (inclusive) }
\end{gathered}
$$

Should we take this difference of 2.7σ seriously?

Measurement of $\left|V_{u b}\right|$ requires study of $b \rightarrow u$ transition
Semileptonic $b \rightarrow u \ell \nu$ decays are best :

- much easier to understand theoretically than hadronic decays
- much easier to study experimentally than purely leptonic decays because far more abundant

Exclusive semileptonic decays e.g. $B^{0} \rightarrow \pi^{-} \ell^{+} v \quad \& \quad B^{+} \rightarrow \eta^{(} \ell^{+} v$ involve a $b \rightarrow u$ transition

The value of $\left|V_{u b}\right|$ is extracted from the measured $\Delta B\left(q^{2}\right)$ as a function of q^{2}, the momentum transferred squared

$$
\Delta B\left(q^{2}\right)=\frac{\tau_{B^{0}}\left|V_{u b}\right|^{2} G_{F}^{2}}{24 \pi^{3}} \int_{q_{\text {min }}^{2}}^{q_{\text {max }}^{2}}\left|\vec{p}_{X u}\right|^{3} f_{+}\left(q^{2}\right)^{2} d q^{2}
$$

$f_{+}\left(q^{2}\right)$: form factor provided by QCD calculations

Experimental data used to discriminate between various QCD calculations by measuring the $f_{+}\left(q^{2}\right)$ i.e. $\Delta B\left(q^{2}\right)$ shape precisely

$$
\left|V_{u b}\right|=\sqrt{\Delta B /\left(\tau_{B^{0}} \Delta \zeta\right)} \quad \Delta \zeta=\frac{G_{F}^{2}}{24 \pi^{3}} \int_{q_{\min }^{2}}^{q_{\max }^{2}}\left|\vec{p}_{X u}\right|^{3} f_{+}\left(q^{2}\right)^{2} d q^{2}
$$

Report on 2 recent analyses in BaBar :

- In the $\pi-\eta$ analysis, study 3 decay modes and measure $\boldsymbol{q}^{2}=\left(\boldsymbol{P}_{\boldsymbol{B}}-\boldsymbol{P}_{\text {meson }}\right)^{\mathbf{2}}$

$$
B^{0} \rightarrow \pi^{-} \ell^{+} v \quad B^{+} \rightarrow \eta \ell^{+} v \quad B^{+} \rightarrow \eta^{\prime} \ell^{+} v
$$

- In the $\pi-\rho$ analysis, study 4 decay modes and measure $\boldsymbol{q}^{2}=\left(\boldsymbol{P}_{\ell}+\boldsymbol{P}_{v}\right)^{\mathbf{2}}$
$B^{0} \rightarrow \pi^{-} \ell^{+} v \quad B^{+} \rightarrow \pi^{0} \ell^{+} v \quad B^{0} \rightarrow \rho^{-} \ell^{+} v \quad B^{+} \rightarrow \rho^{0} \ell^{+} v$

Will concentrate on $B \rightarrow \pi \ell \nu$ mode (mostly $\pi-\eta$ analysis)

- most precise measurement
- value of $\left|V_{u b}\right|$

Comparison of the 2 analyses
$\pi-\eta$ analysis
$\pi-\rho$ analysis

Luminosity on peak $\Upsilon(4 S)$	$422.6 \mathrm{fb}^{-1}$	$349.0 \mathrm{fb}^{-1}$
Number of BB pair events	464 millions	377 millions
q^{2} evaluation	$\left(P_{\mathrm{B}}-P_{\text {meson }}\right)^{2}$	$\left(P_{\ell}+P_{v}\right)^{2}$
Cut strategy	q^{2} dependent, cuts	q^{2} dependent, NN
Cut selection	Loose v cuts	Tighter v cuts
Signal efficiency	8% to 15%	6% to 7%
Background/Signal	11.5	6.3
$B^{0} \rightarrow \pi^{-} \ell^{+} v$ yield	11778 ± 435	7181 ± 279
Number of q^{2} bins in π mode	12	6
Fit strategy	1 -mode $\left(\pi^{-}, \eta, \eta^{\prime}\right) \ell v$	4 -modes $\left(\pi^{-}, \pi^{0}, \rho^{-}, \rho^{0}\right) \ell v$
Systematic uncertainties	Full gaussian	$\pm 1 \sigma$

Estimated overlap < 20\%

$\Delta B\left(q_{i}^{2}\right)=N_{i} / 2 \varepsilon_{i} N_{B}$ N_{i} : number of observed signal events

efficiency : $\varepsilon_{i}=\frac{N_{i}}{N_{i}^{0}}=\frac{\text { total yield in } i^{\text {th }} q^{2} \text { bin after all cuts }}{\text { total yield in } i^{\text {th }} q^{2} \text { bin before any cut }}$
factor of 2 since signal yield \& eff. obtained for sum of e \& muons
$N_{B}=N_{B^{+}}+N_{B^{-}}=2 N_{B B} B\left(\Upsilon(4 S) \rightarrow B^{+} B^{-}\right) \quad$ [2: charge conjugate]
$N_{B}=N_{B^{0}}+N_{\bar{B}^{0}}=2 N_{B B} B\left(\Upsilon(4 S) \rightarrow B^{0} \bar{B}^{0}\right)$
$N_{B B}$: total number of $B \bar{B}$ pairs observed
Need large amounts of MC events to obtain efficiencies, to optimize the cuts, to get shapes of signal and background distributions

$\pi-\eta$ analysis : Loose Neutrino Reconstruction

>> Untagged analysis with loose neutrino cuts
>> event's missing momentum ~ signal v

$$
P_{v}=P_{\text {beam }}-\sum P_{i}=\left(\left|\vec{p}_{\text {miss }}\right|, \vec{p}_{\text {miss }}\right)
$$

>> High signal yield allows to fit in a large (12) number of q^{2} bins
>> Large background yield allows to fit in several bins

We measure $q^{2}=\left(P_{B}-P_{\text {meson }}\right)^{2}$ in Y -average frame approximation, $P_{Y}=P_{\pi}+P_{\ell}$, as the mean of 4 different values of q^{2} corrresponding to 4 different directions of p_{B} on the surface of a cone

Use of Y -average approximation improves q^{2} resolution

The 2D q^{2} distribution yields the detector response matrix used to unfold the measured q^{2} distribution onto the true q^{2} distribution

$\pi-\rho$ analysis : q^{2} resolution

similar to results in $\pi-\eta$ analysis

$\pi-\eta$ analysis : Event selection

All cuts are optimized to maximize $S / \sqrt{S+B} \approx S / \sigma$

$\pi-\eta$ analysis : Backgrounds

3 main sources of background :

- semileptonic $b \rightarrow c \ell \nu$ decays, mostly $B \rightarrow D \ell v$
- semileptonic $b \rightarrow u \ell \nu$ decays $(B \rightarrow \rho \ell \nu, B \rightarrow \omega \ell \nu$, etc...)
- continuum events

$$
\begin{aligned}
& \Delta E=\left(P_{B} \cdot P_{\text {beans }}-s / 2\right) / \sqrt{s} \\
& m_{E S}=\sqrt{\left(s / 2+\vec{p}_{B} \cdot \vec{p}_{\text {beans }}\right)^{2} / E_{\text {beans }}^{2}-\vec{p}_{B}^{2}}
\end{aligned}
$$

$B^{0} \rightarrow \pi^{-} \ell^{+} \nu$

same $B: \ell$ and π originate from the same B meson. both $B: \ell$ and π originate from different B mesons.
$\pi-\eta$ analysis : Backgrounds categories \& fit parameters

Categories	Decay mode				
	$\pi_{l v}$	$\eta_{l}(\gamma \gamma \& 3 \pi)$	$\eta_{\nu}(\gamma \gamma)$	$\eta_{\nu}(3 \pi)$	$\eta^{\prime} \ell v(\gamma \gamma)$
Signal	12	3	3	1	1
$b \rightarrow u l \nu$ same B	2	fixed	fixed	fixed	fixed
$b \rightarrow u l \nu$ both B	2	-	-	-	-
other $B B$ same B	2	1	1	1	1
other $B \bar{B}$ both B	2	-	-	-	-
Continuum	2	1	1	fixed	fixed

For each bin of q^{2} :

$$
B^{0} \rightarrow \pi^{-} \ell^{+} \nu(34 \text { bins }) \quad B \rightarrow \eta^{()} \ell \nu \text { (19 bins) }
$$

$\pi-\eta$ analysis : Fit strategy \& results

Use $\triangle E-m_{E s}$ histograms, from MC as 2D PDFs, in our fit to the data to extract yields of signal and backgrounds as function of q^{2}

mode	mev	nev	n'ev
efficiency \%	8.3-14.6	1.4-2.6	0.6
signal	11778(435)	888(98)	141(46)
$b \rightarrow u \ell v$	27793(929)	2201 (fixed)	204(fixed)
other	80185(963)	17429(247)	2660(82)
continuum	27790(814)	3435(195)	517(fixed)
fit ($\mathrm{X}^{2} / \mathrm{ndf}$)	411/386	56/52	19/17

$\pi-\eta$ analysis : Data/MC ratios in 34 bins of $\Delta \mathrm{E}-\mathrm{m}_{\mathrm{ES}}$ Before the fit

$2<\mathrm{q}^{2}<4 \mathrm{GeV}^{2} / \kappa^{4}$

$8<q^{\prime}<10 \mathrm{GeV}$ f ${ }^{*}$

$16<q^{\prime}<18 \mathrm{GeV}^{2} \mathrm{t}^{*}$

$18<\mathrm{q}^{\prime}<20 \mathrm{GeV}^{1} /{ }^{\prime}$ *

$\pi-\eta$ analysis : Data/MC ratios in 34 bins of $\Delta E-m_{E S}$ Before the fit After the fit
$B^{0} \rightarrow \pi^{-} \ell^{+} V$

$2<q^{2}<4 \mathrm{GeV}^{2} \mathrm{c}^{4}$

$8<q^{\prime}<10 \mathrm{GeV} / \mathrm{c}$;

$10<q^{\prime}<12 \mathrm{GeV}^{1} / \mathrm{c}^{*}$

$8<q^{\prime}<10 \mathrm{GeV} k+$

$10<q^{\prime}<12 \mathrm{GeV}^{1} / \mathrm{c}^{*}$

$\pi-\eta$ analysis : Fit projections

Signal enhanced region : $-0.16<\Delta \mathrm{E}<0.20 \mathrm{GeV} ; \mathrm{m}_{\mathrm{ES}}>5.268 \mathrm{GeV}$
$B^{0} \rightarrow \pi^{-} \ell^{+} v$

$B \rightarrow \eta \ell \nu$

$$
B \rightarrow \eta^{\prime} \ell \nu
$$

Good agreement between data and fitted MC distributions

$\pi-\rho$ analysis : Fit projections

$$
B^{0} \rightarrow \pi^{-} \ell^{+} v
$$

12 October $20 \cdot 10$

$\pi-\eta$ analysis : Systematic uncertainties \& their correlations

- Systematic uncertainties in the partial BF values and their correlations among the $q^{\wedge} 2$ bins investigated
- For each parameter, generate one hundred MC event samples
- Each MC sample contains new $\Delta E-m_{E S}$ distributions generated by varying randomly only the parameter of interest over a full gaussian distribution whose σ is given by the uncertainty on the parameter investigated
- Each MC sample is analyzed the same way as the real data to yield values of partial and total BF
- The contribution of the parameter to the systematic uncertainty is given by the RMS of the distribution of these values over the 100 samples

$\pi-\eta$ analysis : Statistical \& systematic relative uncertainties

Decay mode	$\pi^{-} \ell^{+} \nu$					$\eta \ell^{+} \nu$
q^{2} range $\left(\mathrm{GeV}^{2}\right)$	$q^{2}<12$	$q^{2}<16$	$q^{2}>16$	full q^{2} range	$q^{2}<16$	$\eta^{\prime} \ell^{+} \nu$
Yield	6541.6	8422.1	3355.4	11777.6	887.9	141.0
BF $\left(10^{-4}\right)$	0.83	1.09	0.33	1.42	0.36	0.24
Fit error	3.9	3.7	7.6	3.5	12.5	32.8
Detector effects	3.1	3.5	6.1	4.0	8.0	8.8
Continuum bkg	2.3	1.9	4.0	2.4	0.3	7.1
$B \rightarrow X_{u} \ell \nu$ bkg	2.0	1.7	4.2	2.0	7.6	6.7
$B \rightarrow X_{c} \ell \nu$ bkg	0.6	0.7	1.8	1.0	1.2	2.6
Other effects	2.3	2.2	3.2	2.3	3.4	4.6
Total uncertainty	6.3	6.2	12.0	6.7	17.0	35.8

- Complete tables and correlation matrices available in backup slides
$\pi-\eta$ analysis : Theoretical \& experimental $\Delta \mathrm{B}\left(\mathrm{q}^{2}\right)$ distributions

$$
B^{0} \rightarrow \pi^{-} \ell^{+} v
$$

Function	Fit	$\pi^{-} \ell^{+} \nu$		
Ref.	Parameter	value	$\chi^{2} /$ ndf	Prob.
BK	$\alpha_{B K}$	0.51 ± 0.04	$10.5 / 10$	39.6%
BGL	a_{1} / a_{0}	-1.58 ± 0.13	$19.3 / 10$	3.7%
BGL	a_{1} / a_{0}	-0.64 ± 0.30	$3.8 / 9$	92.2%
	a_{2} / a_{0}	-6.8 ± 1.8		

QCD calculations agree with data in their ranges of validity
arXiv:1010.0987, submitted to Phys. Rev. D
$\pi-\rho$ analysis : Theoretical \& experimental $\Delta \mathrm{B}\left(\mathrm{q}^{2}\right)$ distributions
$B \rightarrow \pi \ell \nu$ (combine charged and neutral pions in fit)

Fit to expt data only

Fit to expt data \& theor values

Parametrization	$\chi^{2} /$ ndf	$\operatorname{Prob}\left(\chi^{2} /\right.$ ndf $)$	Fit parameters
BK	$6.8 / 4$	0.148	$\alpha_{B K}=+0.310 \pm 0.085$
BGL (2 par.)	$6.6 / 4$	0.156	$a_{1} / a_{0}=-0.94 \pm 0.20$
BGL (3 par.)	$6.3 / 3$	0.100	$a_{1} / a_{0}=-0.82 \pm 0.29$
			$a_{2} / a_{0}=-1.14 \pm 1.81$

arXiv:1005.3288, accepted by Phys. Rev. D

Comparison of the two $B \rightarrow \pi \ell v$ results

Results are consistent. Statistical correlations between the 2 data sets fairly low (estimated < 20 \%)

Form factor shapes for other decay channels
$\pi-\eta$ analysis

LCSR calculations compatible with data

Main results

Branching fractions :
$\pi-\eta$ analysis
${ }\left(B^{0} \rightarrow \pi^{-} \ell^{+} \nu\right)=\left(1.42 \pm 0.05_{\text {stat }} \pm 0.08_{\text {syst }}\right) \times 10^{-4} } }$
$\mathcal{B}\left(B^{+} \rightarrow \eta \ell^{+} \nu\right)=\left(3.61 \pm 0.45_{\text {stat }} \pm 0.44_{\text {syst }}\right) \times 10^{-5}$
$\mathcal{B}\left(B^{+} \rightarrow \eta^{\prime} \ell^{+} \nu\right)=\left(2.43 \pm 0.80_{\text {stat }} \pm 0.34_{\text {syst }}\right) \times 10^{-5}$

$$
\mathcal{B}\left(B^{+} \rightarrow \eta^{\prime} \ell^{+} \nu\right) / \mathcal{B}\left(B^{+} \rightarrow \eta \ell^{+} \nu\right)=0.67 \pm 0.24_{\text {stat }} \pm 0.11_{\text {syst }}
$$

$\pi-\rho$ analysis
$\mathcal{B}\left(B^{0} \rightarrow \pi^{-} \ell^{+} \nu\right)=(1.41 \pm 0.05 \pm 0.07) \times 10^{-4}$
$\mathcal{B}\left(B^{0} \rightarrow \rho^{-} \ell^{+} \nu\right)=(1.75 \pm 0.15 \pm 0.27) \times 10^{-4}$
|Vub|

Summary

- New precise BF measurements for

$$
B \rightarrow \pi \ell \nu, B \rightarrow \eta^{(\cdot)} \ell \nu \text { and } B \rightarrow \rho \ell \nu
$$

- Two different BaBar analyses consistent with each other
- All three QCD calculations of the form factor for $B \rightarrow \pi \ell \nu$ decays are consistent with data and yield values of |Vub| consistent with the value of |Vub| measured in inclusive semileptonic decays

	$\pi-\eta$ analysis	$\pi-\rho$ analysis
$\left\|V_{u b}\right\|\left(10^{-3}\right)$		
HPQCD	$3.24 \pm 0.13 \pm 0.16$	$3.21 \pm 0.17_{-0.36}^{+0.55}$
FNAL	$3.14 \pm 0.12 \pm 0.16$	(2.95 $\pm 0.31)$
LCSR	$3.70 \pm 0.07 \pm 0.09$	$3.78 \pm 0.13_{-0.40}^{+0.55}$

Inclusive value of $\left|\mathrm{V}_{\mathrm{ub}}\right|$

$$
\left|\mathrm{V}_{\mathrm{ub}}\right|=(4.27 \pm 0.38) \times 10^{-3}
$$

The end

Backup slides

Backup Slides for $B \rightarrow D_{S} K \ell v$ analysis

Puzzle in exclusive $B \rightarrow D^{(*, *)} \ell v$ branching fractions $B F\left(B \rightarrow X_{c} \ell v\right)>B F(B \rightarrow D \ell v)+B F\left(B \rightarrow D^{*} \ell v\right)+B F\left(B \rightarrow D^{* *} \ell v\right)$

$$
M_{m}^{2}=\left(E_{\text {beam }}-E_{Y}\right)^{2}-\left|\vec{p}_{Y}\right|^{2}=m_{v}^{2}
$$

Measure $B F\left(B \rightarrow D_{s} K \ell v\right)$

$$
Y=D_{S} K \ell \text { candidate }
$$

$B F\left(B^{-} \rightarrow D_{S}^{+} K^{-} \ell^{-} \bar{v}_{\ell}\right)=\left(6.13_{-1.03 s \operatorname{sit}}^{+1.04} \pm 0.43_{\text {syst }} \pm 0.51\left(B F\left(D_{S}\right)\right) \times 10^{-4}\right.$
BF too small to solve the BF puzzle
(presented at ICHEP2010)

$B\left(B^{-} \rightarrow D_{s}^{(*)+} K^{-} \ell^{-} \bar{\nu}_{\ell}\right)$

Puzzle in exclusive $B \rightarrow D^{(*, *)} \mid v$ Branching Fractions:

$$
\mathcal{B}\left(B \rightarrow X_{c} \ell \nu\right)>\mathcal{B}(B \rightarrow D \ell \nu)+\mathcal{B}\left(B \rightarrow D^{*} \ell \nu\right)+\mathcal{B}\left(B \rightarrow D^{* *} \ell \nu\right)
$$

- experimentally: similar rate for broad and narrow (QCD sum rule: narrow >> broad)
- small statistics doesn' \dagger allow to separate broad from non resonant
- $B \rightarrow D_{s}^{(*)}$ Klv similar to $B \rightarrow D^{(*)} \pi l v$. Study hadronic mass spectrum above $2.46 \mathrm{GeV} / \mathrm{c}^{2}$
- $\mathcal{B}\left(B \rightarrow D_{s}^{\left({ }^{*}\right.} \mathrm{Klv}\right)$ expected $\sim 10^{-3}$
A. Petrella ICHEP 2010

12 October 2010
P.Taras/Heavy Quark \& Leptons

- Exclusive reconstruction

$$
\left.\begin{array}{l}
D_{s} \rightarrow \phi\left(K^{+} K^{-}\right) \pi \\
D_{s} \rightarrow \bar{K}^{* 0}\left(K^{ \pm} \pi^{\mp}\right) K
\end{array}\right\} \longleftarrow \begin{aligned}
& \text { Feed Forward NN to } \\
& \text { suppress combinatorial } \\
& \text { bkg. }
\end{aligned}
$$

- lepton ($\mathrm{p}_{\text {lep }}>0.8 \mathrm{GeV} / \mathrm{c}$) and Kaon added to D_{s} candidate
- Bkg from $B \rightarrow D D_{s}$ reduced using angular correlation between D_{s} and D (signal events no correlation)
~30\% of
D_{s} bkg
rejected

$B\left(B^{-} \rightarrow D_{s}^{(*)+} K^{-} \ell^{-} \bar{\nu}_{\ell}\right)$

- Signal yields extracted via unbinned extended maximum likelihood fit to Missing mass

$$
M_{m}^{2}=\left(E_{\text {beam }}-E_{Y}\right)^{2}-\left|\vec{p}_{Y}\right|^{2}=m_{\nu}^{2} \quad Y=D_{s} K l \text { candidate }
$$

electron channel

- leading systematic uncertainty: signal MC modelling ($\sim 3 \%-8 \%$ depending on channel) Signal MC statistics (~2\%)

$$
\mathcal{B}\left(B \rightarrow D_{s}^{+} K^{-} \ell^{-} \bar{\nu}_{\ell}\right)=\left(6.13_{-1.03}^{+1.04} \text { stat. } \pm 0.43_{\text {syst. }} \pm 0.51\left(\mathcal{B}\left(D_{s}\right)\right)\right) \times 10^{-4}
$$

- Result in agreement with ARGUS measurement: $\mathcal{B}\left(B \rightarrow D_{s}^{+} K^{-} \ell^{-} \bar{\nu}_{\ell}\right)<5 \times 10^{-3}$
- $B R$ too small to solve the $B R$ puzzle

Backup Slides for $\pi-\eta$ analysis

Statistical and Systematic relative uncertainties

Statistical and Systematic relative uncertainties

Decay mode	$\pi / \ell^{+} \nu$	$7 \ell^{+} \nu(3 \pi)$	${ }^{7} \ell^{+} \nu(\gamma \gamma)$				${ }_{7} \ell^{+} \nu(3 \pi$ and $\gamma \gamma$ combined)			
q^{2} bins (GeV^{2})	Total	Total	0-4	4.8	8.16	Total	0.4	4.8	8-16	Total
Fitted yield	141.0	244.8	279.9	216.8	146.7	643.4	303.9	331.5	252.5	887.9
Systematic error	14.6	14.3	5.1	5.8	34.9	9.6	5.8	6.6	28.1	10.3
Fit error	32.8	25.6	13.9	17.2	33.9	12.0	14.1	14.2	26.6	11.0
Efficiency	0.61	0.59	2.01	2.55	1.42	-	2.53	3.41	1.94	-
Unfolded yield	141.0	244.8	299.1	210.9	133.3	643.4	319.3	334.8	233.9	887.9
$\Delta \mathcal{B}$	242.5	431.5	155.3	86.3	97.7	339.3	131.8	102.6	126.2	360.6
Tracking efficiency	5.2	4.1	3.2	2.4	14.6	2.6	2.1	2.0	11.1	2.8
Photon efficiency	5.6	3.1	10.1	4.3	27.4	7.0	8.0	3.8	9.0	5.7
K_{L}^{0} efficiency	2.5	0.7	8.6	2.9	27.2	3.2	1.0	0.5	2.2	0.6
K_{L}^{0} production spectrum	2.7	1.4	4.7	1.5	16.2	2.5	0.8	0.5	2.3	1.0
K_{L}^{0} energy	1.1	1.4	0.6	0.5	2.5	0.9	0.6	0.4	2.3	1.0
ℓ identification	2.0	1.8	0.1	2.7	3.9	1.8	0.2	1.9	3.4	1.8
π identification	0.6	0.5	-	-	-	-	0.1	0.2	0.5	0.3
Bremustrahlung	0.5	0.2	1.6	2.7	22.2	8.0	0.3	0.7	12.3	4.2
Continuum yield	4.9	1.1	-	-	-	-	-	-	-	-
q^{2} continuum shape	5.2	2.6	2.6	1.5	4.5	0.5	2.4	0.7	2.8	0.3
$\mathcal{B}\left(B^{0} \rightarrow \pi^{-} \ell^{+} \nu\right)$	0.0	0.1	0.0	0.0	0.1	0.0	0.0	0.0	0.1	0.0
$\mathcal{B}\left(B^{+} \rightarrow \pi^{0} \ell^{+} \nu\right)$	0.2	0.0	0.4	0.9	5.2	1.9	0.3	0.6	2.9	1.3
$\mathcal{B}\left(B^{+} \rightarrow \eta^{(\prime)} \ell^{+} \nu\right)$	0.4	0.4	0.0	0.1	0.8	0.2	0.1	0.1	1.0	0.4
$\mathcal{B}\left(B^{\circ} \rightarrow \rho^{-\ell^{+} \nu}\right)$	0.3	0.5	0.1	1.1	6.9	2.3	0.1	0.6	4.2	1.7
$\mathcal{B}\left(B^{+} \rightarrow \rho^{0} \ell^{+} \nu\right)$	0.0	0.3	0.1	0.1	0.5	0.1	0.0	0.1	0.8	0.2
$\mathcal{B}\left(B^{+} \rightarrow \omega \ell^{+} \nu\right)$	0.8	1.1	0.1	0.2	2.6	0.8	0.1	0.1	2.6	0.9
Non resonamt $b \rightarrow u \ell \nu \mathrm{BF}$	2.3	3.5	0.4	0.9	9.5	3.1	0.5	0.6	8.6	3.4
7 BF	3.1	1.2	0.5	0.7	0.7	0.6	0.5	0.6	0.7	0.5
SF parameters	4.3	6.3	1.4	2.7	16.8	6.1	1.5	2.5	14.3	6.2
$B \rightarrow \rho l \nu \mathrm{FF}$	0.1	0.7	0.1	2.3	1.7	0.9	0.1	1.5	0.9	0.5
$\mathrm{B}^{+} \rightarrow \eta^{(\prime)} \ell^{+}{ }_{\nu} \mathrm{FF}$	1.1	1.0	0.1	0.1	1.4	0.4	0.1	0.1	1.5	0.6
Other scalar FF	2.9	4.2	7.7	1.4	0.1	3.2	0.7	0.1	0.0	0.2
$B \rightarrow \omega \ell \nu \mathrm{FF}$	1.2	2.1	0.1	0.5	2.8	0.7	0.1	0.4	3.9	1.3
$\mathcal{B}(B \rightarrow D \ell \nu)$	1.6	0.7	0.3	0.7	0.6	0.3	0.3	0.7	0.7	0.4
$\mathcal{B}\left(B \rightarrow D^{*} \ell \nu\right)$	0.3	0.4	0.1	0.8	1.2	0.4	0.1	0.7	1.0	0.4
$\mathcal{B}\left(B \rightarrow D^{* *} \psi\right)$	2.0	1.2	0.6	0.9	2.5	0.7	0.6	0.7	2.6	0.9
Non resonant $b \rightarrow c / \nu \mathrm{BF}$	0.1	0.1	0.2	0.1	0.8	0.2	0.3	0.1	0.4	0.2
$B \rightarrow D<\nu \mathrm{FF}$	0.1	0.3	0.1	0.1	0.5	0.2	0.1	0.1	0.7	0.3
$B \rightarrow D^{*} \& \nu \mathrm{FF}$	0.6	0.9	0.5	0.9	1.3	0.4	0.5	1.2	1.2	0.4
$\mathcal{B}\left(T(4 S) \rightarrow B^{0} B^{0}\right)$	1.1	1.2	1.4	1.1	0.9	1.2	1.4	1.2	1.0	1.2
Secondary lepton	4.2	5.0	1.3	0.7	9.1	2.1	1.2	1.6	9.3	3.0
B counting	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1
Signal MC stat error	1.2	1.1	1.4	1.6	1.2	0.7	1.3	1.3	1.0	0.5
Total systernatic error	14.3	12.4	17.0	8.7	55.4	14.1	9.3	6.6	28.7	11.6
Fit error	E2.	Elfels)	174.6	[felil	-30\%	190)		16.6	30.3	12.5
Total error	35.8	28.4	22.4	22.7	67.9	19.6	17.8	17.8	41.8	17.0

Correlation Matrices

$B^{0} \rightarrow \pi^{-} \ell^{+} v$ Statistical

q^{2} bins $\left(\mathrm{GeV}^{2}\right)$	$0-2$	$2-4$	$4-6$	$6-8$	$8-10$	$10-12$	$12-14$	$14-16$	$16-18$	$18-20$	$20-22$	$22-26.4$
$0-2$	1.00	-0.16	0.17	0.02	-0.02	0.03	0.01	0.04	0.05	0.02	0.04	-0.00
$2-4$	-0.16	1.00	-0.32	0.11	0.00	-0.00	-0.01	0.01	0.01	-0.00	0.00	-0.00
$4-6$	0.17	-0.32	1.00	-0.30	0.15	0.02	0.06	0.06	0.07	0.00	0.01	0.01
$6-8$	0.02	0.11	-0.30	1.00	-0.22	0.13	0.07	0.06	0.07	0.00	0.00	0.02
$8-10$	-0.02	0.00	0.15	-0.22	1.00	-0.22	0.16	0.05	0.08	0.01	-0.00	0.02
$10-12$	0.03	-0.00	0.02	0.13	-0.22	1.00	-0.15	0.10	0.07	-0.01	0.02	0.00
$12-14$	0.01	-0.01	0.06	0.07	0.16	-0.15	1.00	-0.16	0.13	-0.01	0.05	-0.00
$14-16$	0.04	0.01	0.06	0.06	0.05	0.10	-0.16	1.00	-0.01	0.01	-0.02	-0.02
$16-18$	0.05	0.01	0.07	0.07	0.08	0.07	0.13	-0.01	1.00	-0.17	0.09	-0.08
$18-20$	0.02	-0.00	0.00	0.00	0.01	-0.01	-0.01	0.01	-0.17	1.00	0.05	-0.05
$20-22$	0.04	0.00	0.01	0.00	-0.00	0.02	0.05	-0.02	0.09	0.05	1.00	-0.35
$22-26.4$	-0.00	-0.00	0.01	0.02	0.02	0.00	-0.00	-0.02	-0.08	-0.05	-0.35	1.00

$B^{0} \rightarrow \pi^{-} \ell^{+} v$ Systematic

	statistical				systematic			
q^{2} bins $\left(\mathrm{GeV}^{2}\right)$	$0-4$	$4-8$	$8-16$	$0-4$	$4-8$	$8-16$		
$0-4$	1.00	-0.08	0.00	1.00	0.36	0.05		
$4-8$	-0.08	1.00	-0.06	0.36	1.00	0.29		
$8-16$	0.00	-0.06	1.00	0.05	0.29	1.00		

q^{2} bins $\left(\mathrm{GeV}^{2}\right)$	0－2	2－4	4－6	6－8	8－10	10－12	12－14	14－16	16－18	18－20	20－22	22－26．4
0－2	1.00	－0．19	0.41	0.33	0.49	0.42	0.49	0.35	0.39	0.14	0.47	0.56
2－4	－0．19	1.00	－0．17	0.08	－0．20	－0．07	－0．14	－0．16	－0．31	0.41	－0．24	0.05
4－6	0.41	－0．17	1.00	0.78	0.82	0.76	0.67	0.68	0.53	0.33	0.72	0.48
6－8	0.33	0.08	0.78	1.00	0.71	0.74	0.65	0.63	0.47	0.49	0.55	0.38
8－10	0.49	－0．20	0.82	0.71	1.00	0.74	0.70	0.70	0.49	0.36	0.66	0.39
10－12	0.42	－0．07	0.76	0.74	0.74	1.00	0.74	0.80	0.61	0.36	0.61	0.40
12－14	0.49	－0．14	0.67	0.65	0.70	0.74	1.00	0.69	0.73	0.29	0.55	0.36
14－16	0.35	－0．16	0.68	0.63	0.70	0.80	0.69	1.00	0.71	0.35	0.64	0.37
16－18	0.39	－0．31	0.53	0.47	0.49	0.61	0.73	0.71	1.00	－0．01	0.62	0.29
18－20	0.14	0.41	0.33	0.49	0.36	0.36	0.29	0.35	－0．01	1.00	0.04	0.20
20－22	0.47	－0．24	0.72	0.55	0.66	0.61	0.55	0.64	0.62	0.04	1.00	0.52
			0.48	0.38	0.39	0.40	$\mathrm{C}_{3} \mathrm{~S}_{2}$	${ }_{0}^{0} 37$	星的呺	$2 . \hat{2}$	Off	1．80

3939
$B^{0} \rightarrow \pi^{-} \ell^{+} \nu \quad$ Projections on ΔE axis

$14<\mathrm{q}^{2}<16 \mathrm{GeV}^{2} / \mathrm{c}^{4}$

Branching fraction results

Total BF for $B^{+} \rightarrow \eta^{\prime} \ell^{+} v:\left(2.43 \pm 0.80_{\text {stat }} \pm 0.34_{\text {syst }}\right) \times 10^{-5}$, significance of 2.67σ an order of magnitude smaller than most recent result of CLEO

$$
\left(2.66 \pm 0.80_{\text {stat }} \pm 0.56_{\text {syst }}\right) \times 10^{-4}
$$

Total BF for $B^{+} \rightarrow \eta \ell^{+} v:\left(3.61 \pm 0.45_{\text {stat }} \pm 0.44_{\text {syst }}\right) \times 10^{-5}$, most precise, compatible with previous BaBar result:

$$
\left(3.7 \pm 0.6_{\text {stat }} \pm 0.7_{\text {syst }}\right) \times 10^{-5}
$$

$B F\left(B^{+} \rightarrow \eta^{\prime} \ell^{+} v\right) / B F\left(B^{+} \rightarrow \eta \ell^{+} v\right)=0.67 \pm 0.27$ allows an important gluonic singlet contribution to the η^{\prime} form factor

Backup Slides for $\pi-\rho$ analysis

Statistical and Systematic relative uncertainties

$B \rightarrow \pi \ell \nu$							
q^{2} range (GeV^{2})	0-4	4-8	8-12	12-16	16-20	>20	0-26.4
Track efficiency	3.4	1.5	2.3	0.1	1.5	2.8	1.9
Photon efficiency	0.1	1.4	1.0	4.6	2.8	0.3	1.8
Lepton identification	3.8	1.6	1.9	1.8	1.9	3.0	1.8
K_{L} efficiency	1.0	0.1	0.5	4.5	0.4	2.0	1.4
K_{L} shower energy	0.1		0.1	0.8	0.9	3.8	0.7
K_{L} spectrum	1.6	1.9	2.2	3.1	4.4	2.3	2.5
$B \rightarrow \pi \ell \nu F F f_{+}$	0.5	0.5	0.5	0.6	1.0	1.0	0.6
$B \rightarrow \rho \ell \nu F F A_{1}$	1.7		3.4	2.0	0.1	1.6	1.7
$B \rightarrow \rho \ell \nu F F A_{2}$	1.3		2.6	1.0	0.1	0.4	1.1
$B \rightarrow \rho \ell \nu F F V$	0.2	0.3	0.9	0.7	0.1	0.5	0.5
$\overline{\mathcal{B}}\left(B^{+} \rightarrow \omega \ell^{+} \nu\right)$	0.1		0.1	0.2	0.3	1.5	0.2
$\mathcal{B}\left(B^{+} \rightarrow \eta \ell^{+} \nu\right)$	0.1		0.2	0.2	0.2	0.5	0.2
$\mathcal{B}\left(B^{+} \rightarrow \eta^{\prime} \ell^{+} \nu\right)$	0.1	0.1	0.1	0.1	0.1	0.3	0.1
$\mathcal{B}\left(B \rightarrow X_{u} \ell \nu\right)$	0.2		0.1	0.1	1.1	1.6	0.4
$B \rightarrow X_{u} \ell \nu$ SF param.	0.4	0.1	0.2	0.2	0.5	4.2	0.7
$B \rightarrow D \ell \nu$ FF ρ_{D}^{2}	0.2	0.1	0.5	0.3	0.2	0.7	0.3
$B \rightarrow D^{*} \ell \nu$ FF R_{1}	0.1	0.4	0.8	0.6	0.3	0.6	0.5
$B \rightarrow D^{*} \ell \nu$ FF R_{2}	0.5	0.2	0.1	0.2	0.1	0.4	0.2
$B \rightarrow D^{*} \ell \nu$ FF ρ_{D}^{2}.	0.7		0.6	0.8	0.4	1.1	0.6
$\mathcal{B}(B \rightarrow$ 生 $)$	0.2		0.3	0.4	0.5	0.5	0.3
$\mathcal{B}\left(B \rightarrow D^{*} \ell \nu\right)$	0.4	0.1	0.3	0.3	0.3	0.7	0.3
$\mathcal{B}\left(B \rightarrow D^{* *} \ell \nu\right)_{\text {narrow }}$	0.4	0.1	0.1	0.3	0.1	0.5	0.2
$\mathcal{B}\left(B \rightarrow D^{* *} \ell \nu\right)_{\text {broad }}$	0.1	0.1	0.1	0.5	0.1	0.2	0.2
Secondary leptons	0.5	0.2	0.3	0.2	0.2	0.7	0.3
Continuum	5.3	1.0	2.6	1.8	3.1	6.1	2.0
Bremsstrahlung	0.3	0.1	0.1	0.1	0.1	0.4	0.2
Radiative corrections	0.5	0.1	0.1	0.2	0.2	0.6	0.3
$N_{B \bar{B}}$	1.2	1.0	1.2	1.2	1.1	1.6	1.2
B lifetimes	0.3		0.3	0.3	0.3	0.7	0.3
				0.8			0.8

$B \rightarrow \rho \ell \nu$				
q^{2} range (GeV^{2})	0-8	8-16	>16	0-20.3
Track efficiency	3.2	2.9	0.3	2.5
Photon efficiency	2.6	2.0	2.6	2.4
Lepton Identification	5.7	3.0	4.0	3.4
K_{L} efficiency	10.3	1.2	4.9	4.8
K_{L} shower energy	1.6	0.8	1.0	1.1
K_{L} spectrum	4.2	6.1	7.0	5.7
$B \rightarrow \pi \ell \nu$ FF f_{+}	0.1	0.1	0.7	0.2
$B \rightarrow \rho \ell \nu$ FF A_{1}	10.7	6.6	4.5	7.5
$B \rightarrow \rho \ell \nu$ FF A_{2}	8.5	3.8	0.8	4.7
$B \rightarrow \rho \ell \nu$ FF V	3.4	3.0	3.6	3.2
$\overline{\mathcal{B}}\left(B^{+} \rightarrow \omega \ell^{+} \nu\right)$	0.7	0.7	3.4	1.2
$\mathcal{B}\left(B^{+} \rightarrow \eta \ell^{+} \nu\right)$	0.8	0.1	0.6	0.4
$\mathcal{B}\left(B^{+} \rightarrow \eta^{\prime} \ell^{+} \nu\right)$	0.8	0.5	1.2	0.7
$\mathcal{B}\left(B \rightarrow X_{u} \ell \nu\right)$	7.4	7.3	10.6	8.0
$B \rightarrow X_{u} \ell \nu$ SF param.	11.9	7.6	12.8	10.0
$B \rightarrow D \ell \nu$ FF ρ_{D}^{2}	0.9	0.2	0.1	0.4
$B \rightarrow D^{*} \ell \nu$ FF R_{1}	0.7	0.1	0.3	0.3
$B \rightarrow D^{*} \ell \nu$ FF R_{2}	1.7	0.1	0.2	0.6
$B \rightarrow D^{*} \ell \nu \mathrm{FF} \rho_{D^{*}}^{2}$	2.0	0.2	0.1	0.7
$\mathcal{B}(B \rightarrow$ 生 $)$	1.6	0.3	0.1	0.7
$\mathcal{B}\left(B \rightarrow D^{*} \ell \nu\right)$	0.5	0.1	0.3	0.3
$\mathcal{B}\left(B \rightarrow D^{* *} \ell \nu\right)_{\text {narrow }}$	1.3	0.1	0.1	0.5
$\mathcal{B}\left(B \rightarrow D^{* *} \ell \nu\right)_{\text {broad }}$	0.7	0.1	0.1	0.3
Secondary leptons	1.5	0.1	0.1	0.5
Continuum	8.9	3.8	5.0	4.0
Bremsstrahlung	0.9	0.1	0.2	0.4
Radiative corrections	1.3	0.1	0.7	0.6
$\overline{N_{B \bar{B}}}$	2.7	2.0	2.5	2.3
B lifetimes	1.5	0.4	0.4	0.7
$f_{ \pm} / f_{00}$	1.2	0.1	0.1	0.4
Hegutbyst. error	26.1	16.1	21.3	15.7

Correlation Matrices

$$
B \rightarrow \pi \ell \nu \text { Statistical }
$$

q^{2} range $\left(\mathrm{GeV}^{2}\right)$	$0-4$	$4-8$	$8-12$	$12-16$	$16-20$	>20
$0-4$	1.000	0.191	0.050	-0.005	0.068	0.057
$4-8$		1.000	0.089	0.058	0.085	0.011
$8-12$			1.000	0.197	0.127	0.005
$12-16$				1.000	0.135	-0.008
$16-20$						1.000
>20						0.032

$B \rightarrow \pi \ell \nu$ Systematic

q^{2} range $\left(\mathrm{GeV}^{2}\right)$	$0-4$	$4-8$	$8-12$	$12-16$	$16-20$	>20
$0-4$	1.000	0.521	0.705	0.394	-0.052	0.075
$4-8$		1.000	0.853	0.687	0.605	0.478
$8-12$			1.000	0.652	0.366	0.439
$12-16$				1.000	0.637	0.367
$16-20$					1.000	0.509
>20						

$$
\begin{array}{cc}
B \rightarrow \rho \ell v & B \rightarrow \rho \ell v \\
\text { Statistical } & \text { Systematic }
\end{array}
$$

q^{2} range $\left(\mathrm{GeV}^{2}\right)$	$0-8$	$8-16$	>16	$0-8$	$8-16$	>16
$0-8$	1.000	0.264	0.137	1.000	0.339	0.692
$8-16$		1.000	0.189		1.000	0.296
>16		1.000		1.000		

