Studies of exclusive semileptonic *B* decays and extraction of |V_{ub}| at *BaBar*

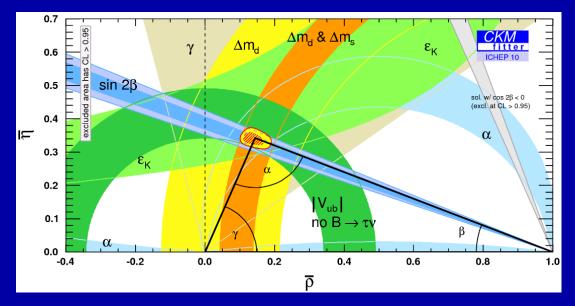
Paul Taras

Université de Montréal

(on behalf of the BaBar collaboration)

Exclusive charmless semileptonic B decays

$$\begin{array}{ccc} B^{0} \rightarrow \pi^{-}\ell^{+}\nu & B^{+} \rightarrow \pi^{0}\ell^{+}\nu & B^{+} \rightarrow \eta\ell^{+}\nu & B^{+} \rightarrow \eta'\ell^{+}\nu \\ \\ B^{0} \rightarrow \rho^{-}\ell^{+}\nu & B^{+} \rightarrow \rho^{0}\ell^{+}\nu \end{array}$$


12 October 2010

In Standard model, quark flavour changes occur through weak interactions via coupling of a W gauge boson

Such couplings are prop. to relevant CKM matrix elements

Probability of a b quark to decay into a u quark is prop. to $|V_{ub}|^2$

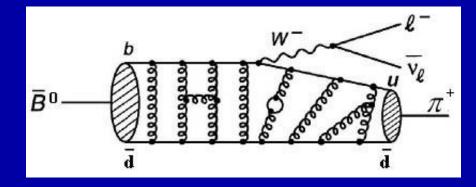
Unitarity of CKM matrix represented by triangle in the ρ - η complex plane

second poorest known element, its precise measurement would constrain the description of weak interactions and CP violation

 $|V_{ub}|$ results presented at FPCP2010 (Bob Kowaleski)

 $B \rightarrow \pi \ell \nu : (2.95 \pm 0.31) \times 10^{-3}$ (exclusive)

 $B \rightarrow u\ell \nu : (4.27 \pm 0.38) \times 10^{-3}$ (inclusive)


Should we take this difference of 2.7 σ seriously?

Measurement of $|V_{ub}|$ requires study of $b \rightarrow u$ transition

Semileptonic $b \rightarrow u\ell v$ decays are best :

- much easier to understand theoretically than hadronic decays
- much easier to study experimentally than purely leptonic decays because far more abundant

Exclusive semileptonic decays e.g.
$$B^0 \to \pi^- \ell^+ \nu \quad \& \quad B^+ \to \eta^{()} \ell^+ \nu$$
 involve a $b \to u$ transition

The value of $|V_{ub}|$ is extracted from the measured $\Delta B(q^2)$ as a function of q^2 , the momentum transferred squared

$$\Delta B(q^2) = \frac{\tau_{B^0} |V_{ub}|^2 G_F^2}{24\pi^3} \int_{q_{\min}^2}^{q_{\max}^2} |\vec{p}_{Xu}|^3 f_+(q^2)^2 dq^2$$

 $f_{\perp}(q^2)$: form factor provided by QCD calculations

Experimental data used to discriminate between various QCD calculations by measuring the $f_+(q^2)$ *i.e.* $\Delta B(q^2)$ shape precisely

$$|V_{ub}| = \sqrt{\Delta B / (\tau_{B^0} \Delta \zeta)} \qquad \Delta \zeta = \frac{G_F^2}{24\pi^3} \int_{q_{\min}^2}^{q_{\max}^2} |\vec{p}_{Xu}|^3 f_+ (q^2)^2 dq^2$$

Report on 2 recent analyses in BaBar :

- In the π - η analysis, study 3 decay modes and measure $q^2 = (P_B - P_{meson})^2$

$$B^0 \to \pi^- \ell^+ \nu \qquad B^+ \to \eta \ell^+ \nu \qquad B^+ \to \eta' \ell^+ \nu$$

- In the π -p analysis, study 4 decay modes and measure $q^2 = (P_{\ell} + P_{\nu})^2$

$$B^{0} \to \pi^{-} \ell^{+} \nu \quad B^{+} \to \pi^{0} \ell^{+} \nu \quad B^{0} \to \rho^{-} \ell^{+} \nu \quad B^{+} \to \rho^{0} \ell^{+} \nu$$

Will concentrate on $B \rightarrow \pi \ell \nu$ mode (mostly π - η analysis) - most precise measurement - value of $|V_{ub}|$

12 October 2010

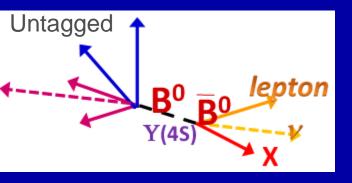
Comparison of the 2 analyses

	π-η analysis	π-ρ analysis
Luminosity on peak Υ (4S)	422.6 fb ⁻¹	349.0 fb ⁻¹
Number of BB pair events	464 millions	377 millions
q² evaluation	(P _B -P _{meson}) ²	(P _ℓ +P _ν) ²
Cut strategy	q² dependent, cuts	q² dependent, NN
Cut selection	Loose v cuts	Tighter v cuts
Signal efficiency	8% to 15%	6% to 7%
Background/Signal	11.5	6.3
B ⁰ →π ⁻ ℓ+v yield	11778 ± 435	7181 ± 279
Number of q^2 bins in π mode	12	6
Fit strategy	1-mode (π⁻,η,η′)ℓν	4-modes (π ⁻ ,π ⁰ ,ρ ⁻ ,ρ ⁰)ℓν
Systematic uncertainties	Full gaussian	±1σ

Estimated overlap < 20%

 $\Delta B(q_i^2) = N_i / 2\varepsilon_i N_B$ N_i : number of observed signal events

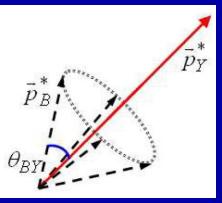
efficiency:
$$\varepsilon_i = \frac{N_i}{N_i^0} = \frac{\text{total yield in } i^{th} q^2 \text{ bin after all cuts}}{\text{total yield in } i^{th} q^2 \text{ bin before any cut}}$$


factor of 2 since signal yield & eff. obtained for sum of e & muons

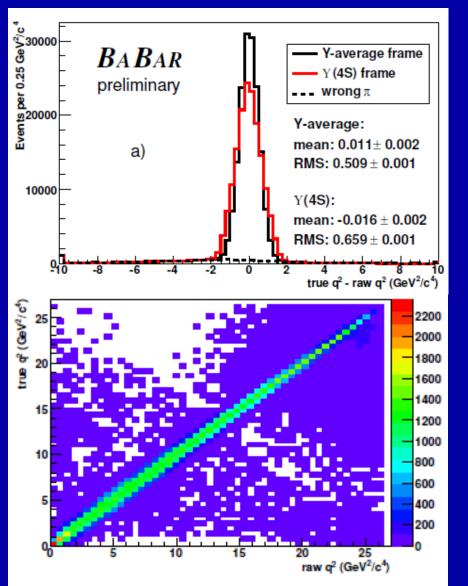
$$\begin{split} N_{B} &= N_{B^{+}} + N_{B^{-}} = 2N_{BB}B(\Upsilon(4S) \rightarrow B^{+}B^{-}) & \text{[2:charge conjugate]} \\ N_{B} &= N_{B^{0}} + N_{\overline{B}^{0}} = 2N_{BB}B(\Upsilon(4S) \rightarrow B^{0}\overline{B}^{0}) \end{split}$$

 N_{BB} : total number of $B\overline{B}$ pairs observed

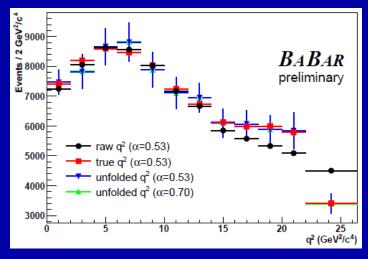
Need large amounts of MC events to obtain efficiencies, to optimize the cuts, to get shapes of signal and background distributions


π - η analysis : Loose Neutrino Reconstruction

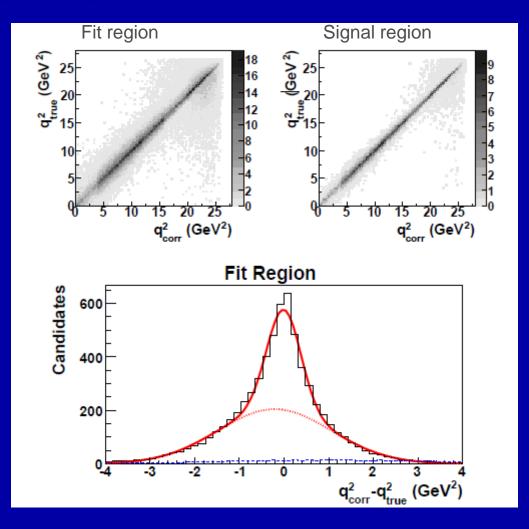
>> Untagged analysis with loose neutrino cuts >> event's missing momentum ~ signal v $P_v = P_{beam} - \sum P_i = (|\vec{p}_{miss}|, \vec{p}_{miss})$


>> High signal yield allows to fit in a large (12) number of q² bins

>> Large background yield allows to fit in several bins

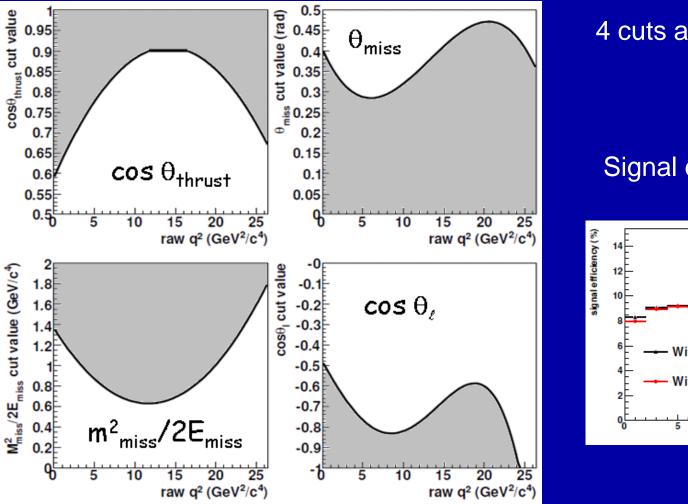

We measure $q^2 = (P_B - P_{meson})^2$ in Y-average frame approximation , $P_Y = P_{\pi} + P_{\ell}$, as the mean of 4 different values of q² corresponding to 4 different directions of p_B on the surface of a cone

π-η analysis : q² resolution

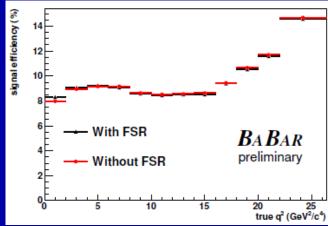


Use of Y-average approximation improves q² resolution

The 2D q² distribution yields the detector response matrix used to unfold the measured q² distribution onto the true q² distribution


π-ρ analysis : q² resolution

similar to results in $\pi-\eta$ analysis


π - η analysis : Event selection

All cuts are optimized to maximize $S/\sqrt{S+B} \approx S/\sigma$

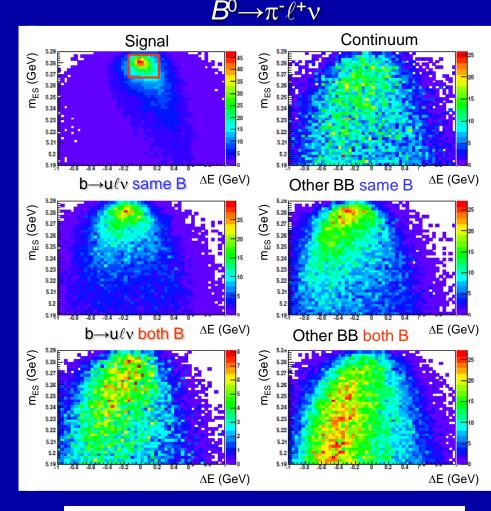
4 cuts are q² dependent

Signal efficiency :

P.Taras/Heavy Quark & Leptons

12 October 2010

π-η analysis : Backgrounds


3 main sources of background :

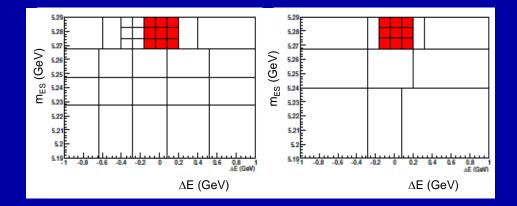
• semileptonic $b \rightarrow c\ell \nu$ decays, mostly $B \rightarrow D\ell \nu$

• semileptonic $b \rightarrow u\ell v$ decays $(B \rightarrow \rho\ell v, B \rightarrow \omega\ell v, etc...)$

continuum events

$$\Delta E = \left(P_B \cdot P_{beams} - s/2 \right) / \sqrt{s}$$
$$m_{ES} = \sqrt{\left(s/2 + \vec{p}_B \cdot \vec{p}_{beams} \right)^2 / E_{beams}^2 - \vec{p}_B^2}$$

same B : ℓ and π originate from the same B meson. both B : ℓ and π originate from different B mesons.

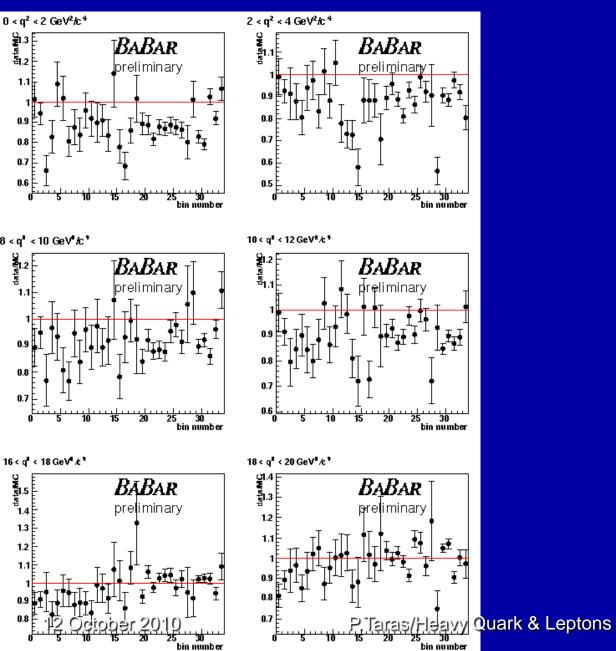

π - η analysis : Backgrounds categories & fit parameters

Categories		Decay mode											
	$\pi \ell \nu$	$\eta\ell\nu$ ($\gamma\gamma$ & 3π)	$\eta\ell\nu$ ($\gamma\gamma$)	$\eta\ell\nu$ (3π)	$\eta'\ell\nu~(\gamma\gamma)$								
Signal	12	3	3	1	1								
$b \to u \ell \nu$ same B	2	fixed	fixed	fixed	fixed								
$b \to u \ell \nu$ both B	2	-	-	-	-								
other BB same B	2	1	1	1	1								
other $B\bar{B}$ both B	2	-	-	-	-								
Continuum	2	1	1	fixed	fixed								

For each bin of q^2 :

 $B^0 \rightarrow \pi^- \ell^+ \nu$ (34 bins)

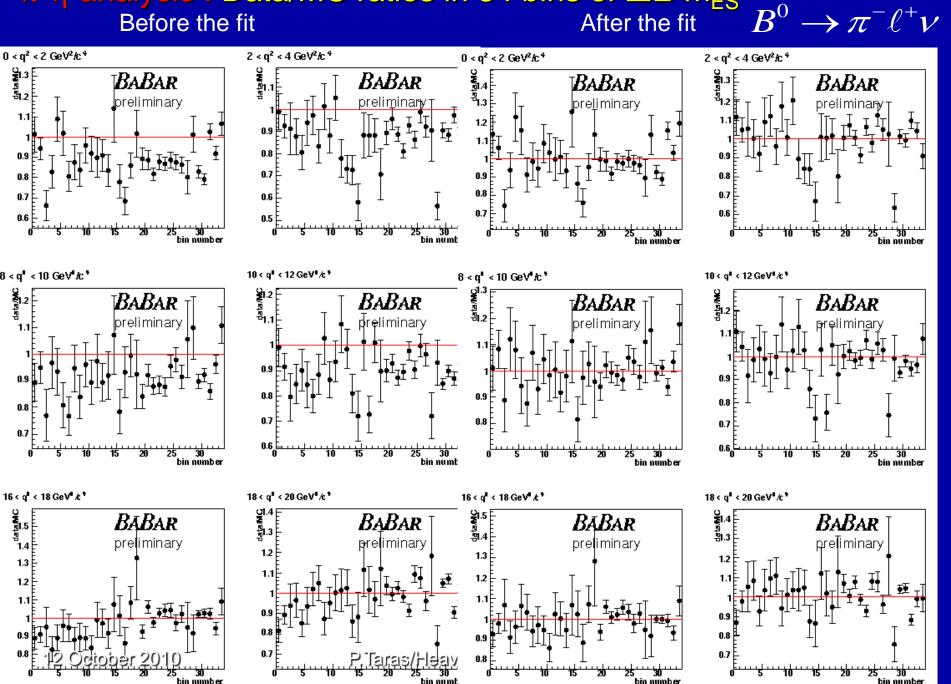
 $B \rightarrow \eta^{(\prime)} \ell \nu$ (19 bins)



π-η analysis : Fit strategy & results

Use ΔE -m_{ES} histograms, from MC as 2D PDFs, in our fit to the data to extract yields of signal and backgrounds as function of q²

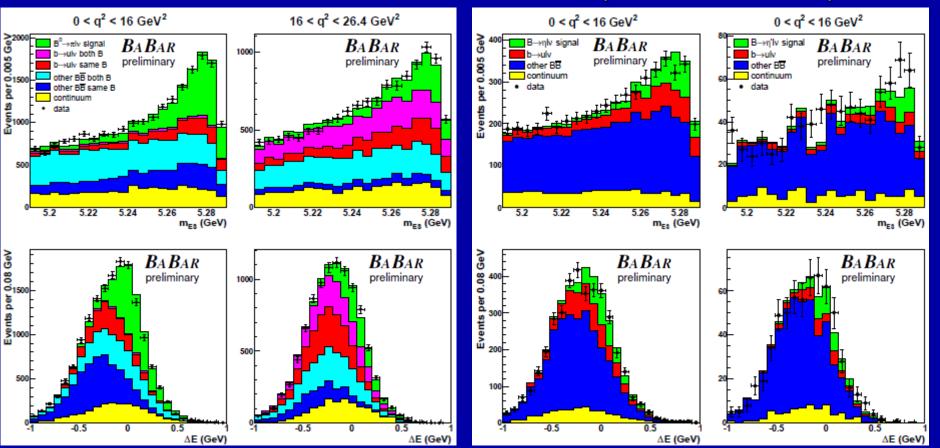
mode	πℓν	ηℓν	η' <i>ℓ</i> ν
efficiency %	8.3 – 14.6	1.4 – 2.6	0.6
signal	11778(435)	888(98)	141(46)
b → uℓv	27793(929)	2201(fixed)	204(fixed)
other	80185(963)	17429(247)	2660(82)
continuum	27790(814)	3435(195)	517(fixed)
fit (χ²/ndf)	411/386	56/52	19/17


π-η analysis : Data/MC ratios in 34 bins of $\Delta E-m_{ES}$ Before the fit After the fit

8

 $\underline{B^0} \rightarrow \pi^- \ell^+ \nu$

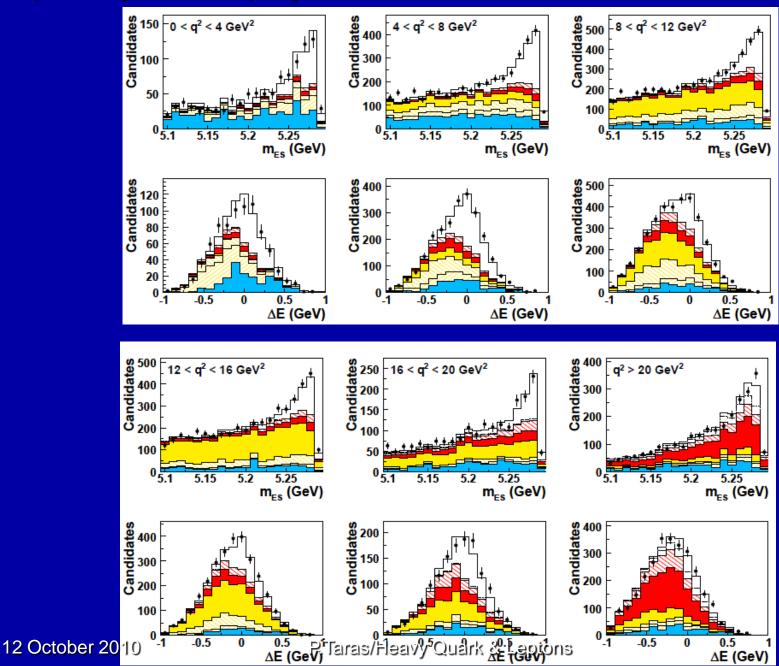
π -η analysis : Data/MC ratios in 34 bins of Δ E-m_{ES} Before the fit After the fit


π - η analysis : Fit projections

Signal enhanced region : -0.16 < Δ E < 0.20 GeV; m_{ES} > 5.268 GeV

 $B^0 \rightarrow \pi^- \ell^+ \nu$

 $B \rightarrow \eta \ell \nu$


```
B \rightarrow \eta' \ell \nu
```

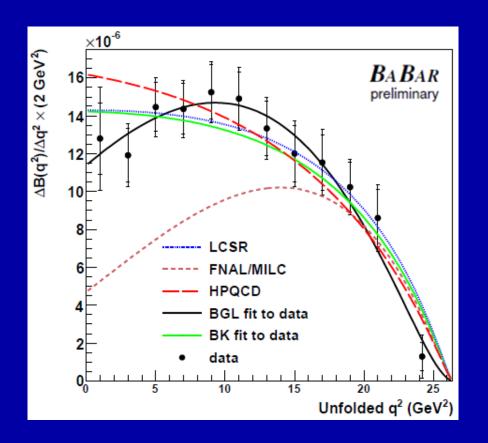

Good agreement between data and fitted MC distributions 12 October 2010 P.Taras/Heavy Quark & Leptons

π -p analysis : Fit projections

 $B^0 \rightarrow \pi^- \ell^+ \nu$

2Q20

π - η analysis : Systematic uncertainties & their correlations


- Systematic uncertainties in the partial BF values and their correlations among the q² bins investigated
- For each parameter, generate one hundred MC event samples
- Each MC sample contains new $\Delta E m_{ES}$ distributions generated by varying randomly only the parameter of interest over a full gaussian distribution whose σ is given by the uncertainty on the parameter investigated
- Each MC sample is analyzed the same way as the real data to yield values of partial and total BF
- The contribution of the parameter to the systematic uncertainty is given by the RMS of the distribution of these values over the 100 samples

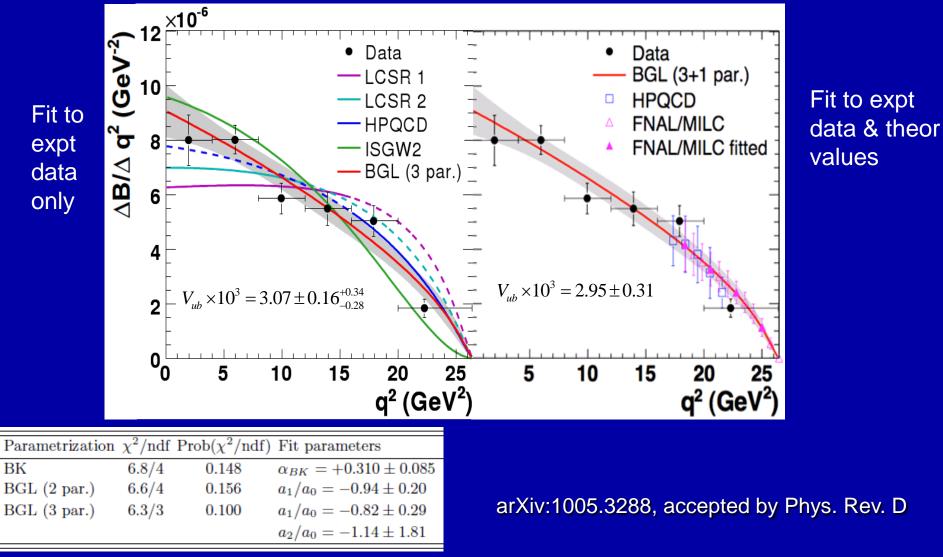
π - η analysis : Statistical & systematic relative uncertainties

Decay mode			$\pi^{-}\ell^{+}\nu$		$\eta \ell^+ \nu$	$\eta' \ell^+ \nu$
q^2 range (GeV ²)	$q^2 < 12$	$q^2 < 16$	$q^2 > 16$	full q^2 range	$q^2 < 16$	$q^2 < 16$
Yield	6541.6	8422.1	3355.4	11777.6	887.9	141.0
BF (10^{-4})	0.83	1.09	0.33	1.42	0.36	0.24
Fit error	3.9	3.7	7.6	3.5	12.5	32.8
Detector effects	3.1	3.5	6.1	4.0	8.0	8.8
Continuum bkg	2.3	1.9	4.0	2.4	0.3	7.1
$B \to X_u \ell \nu$ bkg	2.0	1.7	4.2	2.0	7.6	6.7
$B \to X_c \ell \nu$ bkg	0.6	0.7	1.8	1.0	1.2	2.6
Other effects	2.3	2.2	3.2	2.3	3.4	4.6
Total uncertainty	6.3	6.2	12.0	6.7	17.0	35.8

- Complete tables and correlation matrices available in backup slides

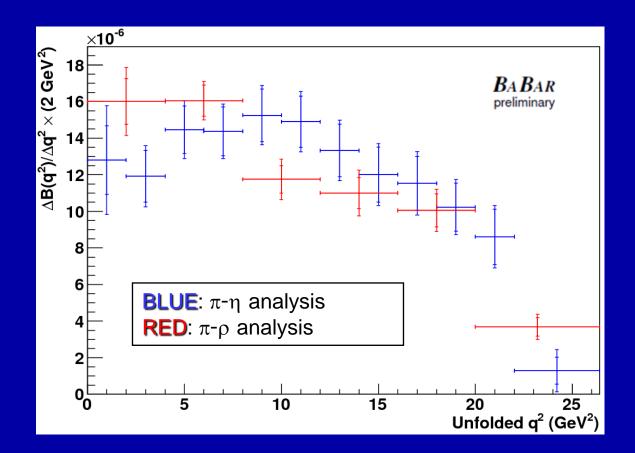
π-η analysis : Theoretical & experimental $\Delta B(q^2)$ distributions

 $B^0 \rightarrow \pi^- \ell^+ \nu$


Function	Fit	π-	$\ell^+ \nu$	
Ref.	Parameter	value	χ^2/ndf	Prob.
BK	α_{BK}	0.51 ± 0.04	10.5/10	39.6%
BGL	a_1/a_0	-1.58 ± 0.13	19.3/10	3.7%
BGL	a_1/a_0	-0.64 ± 0.30	3.8/9	92.2%
	a_2/a_0	-6.8 ± 1.8		

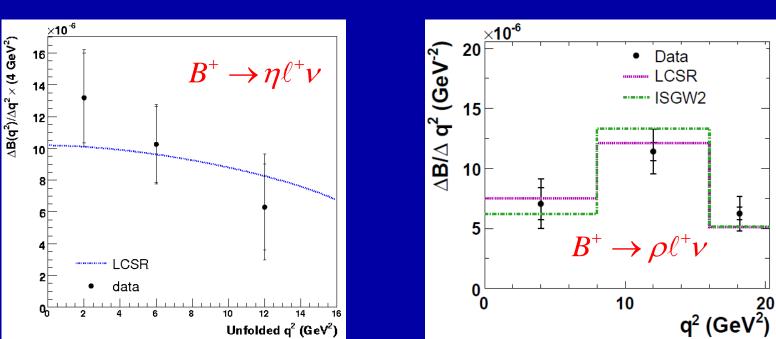
QCD calculations agree with data in their ranges of validity

arXiv:1010.0987, submitted to Phys. Rev. D


π-ρ analysis : Theoretical & experimental $\Delta B(q^2)$ distributions

 $B \rightarrow \pi \ell \nu$ (combine charged and neutral pions in fit)

12 October 2010


Comparison of the two $B \rightarrow \pi \ell \nu$ results

Results are consistent. Statistical correlations between the 2 data sets fairly low (estimated < 20 %)

Form factor shapes for other decay channels

 π - η analysis

π-ρ analysis

LCSR calculations compatible with data

Main results

Branching fractions :

π-η analysis

 $\mathcal{B}(B^0 \to \pi^- \ell^+ \nu) = (1.42 \pm 0.05_{stat} \pm 0.08_{syst}) \times 10^{-4}$ $\mathcal{B}(B^+ \to \eta \ell^+ \nu) = (3.61 \pm 0.45_{stat} \pm 0.44_{syst}) \times 10^{-5}$ $\mathcal{B}(B^+ \to \eta' \ell^+ \nu) = (2.43 \pm 0.80_{stat} \pm 0.34_{syst}) \times 10^{-5}$

$$\mathcal{B}(B^+ \to \eta' \ell^+ \nu) / \mathcal{B}(B^+ \to \eta \ell^+ \nu) = 0.67 \pm 0.24_{stat} \pm 0.11_{syst}$$

 π - ρ analysis

$$\begin{aligned} \mathcal{B}(B^0 \to \pi^- \ell^+ \nu) &= (1.41 \pm 0.05 \pm 0.07) \times 10^{-4} \\ \mathcal{B}(B^0 \to \rho^- \ell^+ \nu) &= (1.75 \pm 0.15 \pm 0.27) \times 10^{-4} \end{aligned}$$

Vub :

1.1		π-η analysi	S	π-ρ analysis	
	q^2 (GeV ²)	$\Delta \zeta \ (\mathrm{ps}^{-1})$	$ V_{ub} $ (10 ⁻³)		
HPQCD	> 16	2.07 ± 0.57 3	$3.24 \pm 0.13 \pm 0.16 \begin{array}{c} +0.57 \\ -0.37 \end{array}$	$3.21 \pm 0.17^{+0.55}_{-0.36}$	
FNAL	> 16	$2.21 \stackrel{+0.47}{_{-0.42}}$	$3.14 \pm 0.12 \pm 0.16 \ ^{+0.35}_{-0.29}$	(2.95 ± 0.31)	
LCSR	< 12	$4.00 \stackrel{+1.01}{_{-0.95}}$	$3.70 \pm 0.07 \pm 0.09 {}^{+0.54}_{-0.39}$	$3.78 \pm 0.13^{+0.55}_{-0.40}$	
$ V_{ub}f_+(0) $	$ = (8.6 \pm$	$0.3_{stat} \pm 0.3$	$(s_{syst}) imes 10^{-4}$	(10.8 ± 0.6) x	10-4

Summary

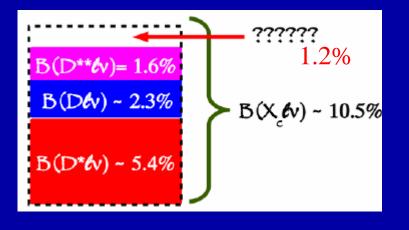
- New precise BF measurements for $B \rightarrow \pi \ell \nu$, $B \rightarrow \eta^{(\prime)} \ell \nu$ and $B \rightarrow \rho \ell \nu$

- Two different BaBar analyses consistent with each other

- All three QCD calculations of the form factor for $B \rightarrow \pi \ell \nu$ decays are consistent with data and yield values of |Vub| consistent with the value of |Vub| measured in inclusive semileptonic decays

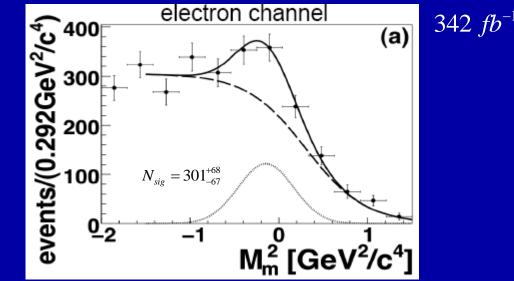
	π-η analysis	π- ρ analysis
	$ V_{ub} \ (10^{-3})$	
HPQCD	$3.24 \pm 0.13 \pm 0.16 \ ^{+0.57}_{-0.37}$	$3.21 \pm 0.17^{+0.55}_{-0.36}$
FNAL	$3.14 \pm 0.12 \pm 0.16 \ ^{+0.35}_{-0.29}$	
LCSR	$3.70 \pm 0.07 \pm 0.09 \ ^{+0.54}_{-0.39}$	$3.78 \pm 0.13^{+0.55}_{-0.40}$

Inclusive value of |V_{ub}|


 $|V_{ub}| = (4.27 \pm 0.38) \times 10^{-3}$

The end

Backup slides


Backup Slides for $B \rightarrow D_s K \ell \nu$ analysis

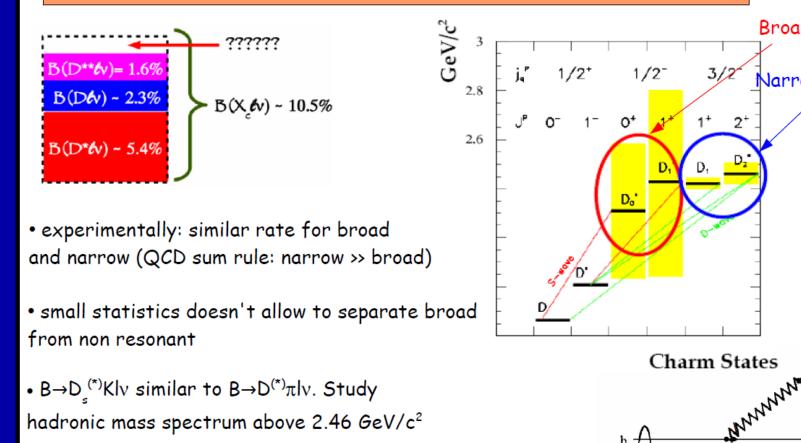
Puzzle in exclusive $B \to D^{(*,**)} \ell \nu$ branching fractions $BF(B \to X_c \ell \nu) > BF(B \to D\ell \nu) + BF(B \to D^* \ell \nu) + BF(B \to D^{**} \ell \nu)$

$$M_m^2 = (E_{beam} - E_Y)^2 - |\vec{p}_Y|^2 = m_v^2$$
$$Y = D_S K \ell \ candidate$$

Measure $BF(B \rightarrow D_s K \ell \nu)$

 $BF(\overline{B^{-} \to D_{S}^{+} K^{-} \ell^{-} \overline{\nu}_{\ell}}) = (6.13^{+1.04}_{-1.03\,stat} \pm 0.43_{syst} \pm 0.51(\overline{BF(D_{S})}) \times 10^{-4})$

BF too small to solve the BF puzzle


(presented at ICHEP2010)

12 October 2010

${\cal B}(B^- o D_s^{(*)+} K^- \ell^- ar{ u}_\ell$)

Puzzle in exclusive $B \rightarrow D^{(*,**)} Iv$ Branching Fractions:

 $\mathcal{B}(B \to X_c \ell \nu) > \mathcal{B}(B \to D \ell \nu) + \mathcal{B}(B \to D^* \ell \nu) + \mathcal{B}(B \to D^{**} \ell \nu)$

•
$$\mathcal{B}(B \rightarrow D_{e}^{(*)} K | v)$$
 expected ~ 10⁻³

A. Petrella ICHEP 2010

В

11

P.Taras/Heavy Quark & Leptons

e-/μ-

 v_c/v_c

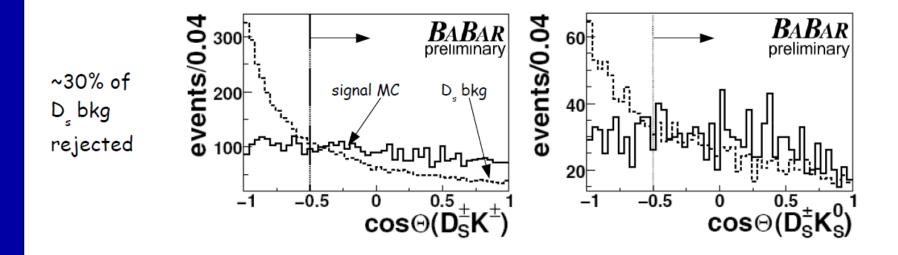
 $\frac{c}{s}D_{s}^{+}$

 $\frac{s}{u} K$

Broad states

Narrow states

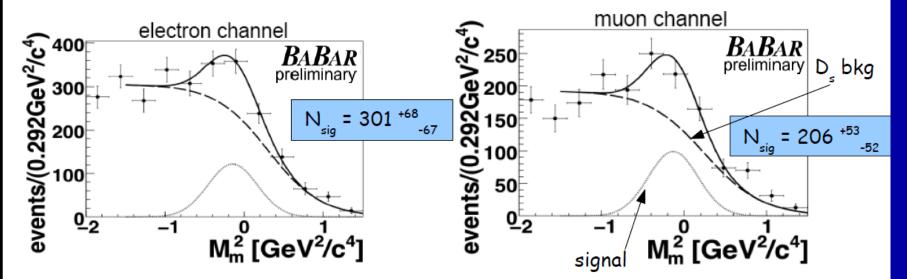
 2^{+}



Exclusive reconstruction

$$\begin{array}{c}
D_s \to \phi(K^+K^-)\pi \\
D_s \to \bar{K}^{*0}(K^{\pm}\pi^{\mp})K \\
D_s \to K^0_s(\pi^+\pi^-)K
\end{array}$$

Feed Forward NN to suppress combinatorial bkg.


- lepton (p_{lep} > 0.8 GeV/c) and Kaon added to D_s candidate
- Bkg from $B \rightarrow DD_{s}$ reduced using angular correlation between D_{s} and D (signal events no correlation)

$\mathcal{B}(B^- \to D_s^{(*)+} K^- \ell^- \bar{\nu}_\ell)$

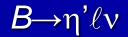
• Signal yields extracted via unbinned extended maximum likelihood fit to Missing mass

 $M_m^2 = (E_{beam} - E_Y)^2 - |\vec{p}_Y|^2 = m_{\nu}^2$ $Y = D_s K \ell$ candidate

leading systematic uncertainty: signal MC modelling (~3%- 8% depending on channel)
 Signal MC statistics (~2%)
 342 fb⁻¹

 $\mathcal{B}(B \to D_s^+ K^- \ell^- \bar{\nu}_\ell) = (6.13^{+1.04}_{-1.03} stat. \pm 0.43_{syst.} \pm 0.51(\mathcal{B}(D_s))) \times 10^{-4}$

- Result in agreement with ARGUS measurement: ${\cal B}(B o D_s^+ K^- \ell^- ar
 u_\ell) < 5 imes 10^{-3}$
- BR too small to solve the BR puzzle


Backup Slides for π - η analysis

Statistical and Systematic relative uncertainties

	Fitted yield	894.7							1-1-1-0	100-100	100-100	40.00	22 - 26.4	4	4	4 - 10	Total
		094.7	987.8	1177.1	1181.3	1178.6	1122.1	996.1	884.5	904.3	847.5	729.9	873.9	6541.6	8422.1	3355.4	11777.6
	Yield systematic error	13.7	5.9	3.1	2.7	2.8	2.7	2.9	3.6	4.7	5.3	7.9	25.6	4.3	3.0	8.9	4.3
	Yield fit error	12.8	8.1	6.0	6.4	6.7	7.0	8.2	9.8	10.3	10.5	14.0	21.0	3.2	3.6	7.9	3.7
	Efficiency	8.34	9.10	9.22	9.09	8.59	8.46	8.53	8.50	9.40	10.52	11.61	14.59	-	-	-	-
	Eff. (Without FSR)	8.00	8.97	9.15	9.18	8.63	8.53	8.58	8.61	9.45	10.66	11.71	14.70	-	-	-	-
	Unfolded yield	919.9	960.7	1189.6	1184.5	1182.9	1141.5	1027.3	929.2	979.5	979.9	905.8	376.7	6579.1	8535.7	3241.9	11777.6
	ΔB	122.7	117.6	143.6	145.0	153.4	150.2	134.1	121.7	116.0	103.7	86.8	28.7	832.5	1088.3	335.3	1423.5
	ΔB (Without FSR)	128.0	119.2	144.6	143.7	152.5	149.0	133.3	120.1		102.3	86.1	28.5	837.1	1090.5	332.3	1422.8
	Tracking efficiency	3.1	1.9	3.1	2.3	2.3	3.9	2.6	4.1	3.5	1.3	4.1	9.4	2.3	2.5	2.9	2.6
	Photon efficiency	5.8	3.3	2.6	1.3	2.2	2.5	3.1	3.0	5.0	1.4	5.2	24.4	1.9	2.2	4.7	2.7
	K_L^0 efficiency	0.8	0.3	0.6	0.3	0.5	0.4	0.5	0.8	0.6	0.5	1.7	6.9	0.3	0.3	1.0	0.4
	K_L^0 production spectrum	0.9	0.6	1.0	0.6	1.1	1.0	0.6	2.8	1.7	1.0	2.0	8.3	0.7	0.9	1.9	1.1
	K_L^0 energy	1.0	0.6	0.3	0.2	0.2	0.3	0.2	0.4	0.6	0.7	0.8	7.1	0.2	0.3	0.8	0.3
	l identification	3.8	1.0	1.2	1.3	0.6	0.6	1.6	1.0	0.9	1.6	0.7	4.9	0.3	0.5	1.1	0.6
	π identification Proceedings	0.5 0.5	0.2 0.3	0.2 0.1	0.2 0.2	0.2	0.2 0.2	0.2	0.3 0.3	0.3	0.3 0.3	0.3 0.3	5.6 5.3	0.2	0.2	0.7 0.7	0.3
	Bremsstrahlung q ² continuum shape	7.6	1.6	0.1	0.2	0.2	0.2	1.1	0.3	0.3	1.2	1.2	5.5	0.2	0.2	1.0	0.3
	q ⁻ continuum shape m _{ES} continuum shape	8.8	0.6	1.1	0.6	0.1	0.5	0.7	0.5	1.1	0.8	1.2	5.5 28.3	1.8	1.5	3.4	2.0
	ΔE continuum shape	3.4	2.7	0.4	0.5	0.5	0.3	0.2	0.3	0.3	1.4	2.1	20.3 9.0	1.0	0.9	1.8	1.1
	$\mathcal{B}(B^+ \rightarrow \pi^0 \ell^+ \nu)$	0.5	0.1	0.1	0.1	0.1	0.1	0.2	0.3	0.3	0.3	0.4	7.2	0.2	0.2	0.8	0.3
	$\mathcal{B}(B^0 \rightarrow \rho^- \ell^+ \nu)$	0.5	0.3	0.1	0.1	0.2	0.1	0.2	0.3	0.3	0.4	0.5	10.2	0.2	0.2	0.9	0.3
	$\mathcal{B}(B^+ \rightarrow \rho^0 \ell^+ \nu)$	0.6	0.2	0.1	0.1	0.2	0.2	0.2	0.3	0.4	0.3	0.3	7.4	0.2	0.2	0.9	0.3
	$\mathcal{B}(B^+ \rightarrow \omega \ell^+ \nu)$	0.5	0.1	0.1	0.1	0.1	0.1	0.2	0.3	0.3	0.4	0.3	8.3	0.2	0.2	1.0	0.3
	$\mathcal{B}(B^+ \rightarrow \eta \ell^+ \nu)$	0.5	0.1	0.1	0.1	0.1	0.1	0.2	0.3	0.3	0.3	0.2	5.6	0.2	0.2	0.7	0.3
	$\mathcal{B}(B^+ \rightarrow \eta' \ell^+ \nu)$	0.5	0.1	0.1	0.1	0.1	0.1	0.2	0.3	0.3	0.3	0.3	5.4	0.2	0.2	0.7	0.3
	Non resonant $b \rightarrow u \ell \nu$ BF	0.6	0.3	0.1	0.1	0.2	0.2	0.2	0.4	0.5	0.3	0.6	7.9	0.2	0.2	0.7	0.3
	SF parameters	0.9	0.5	0.9	0.4	0.3	0.5	0.6	0.3	0.5	2.3	4.1	23.5	0.6	0.4	2.3	0.8
	$B \rightarrow \rho \ell \nu FF$	2.3	1.4	2.0	1.4	1.9	1.6	0.8	0.7	2.4	3.0	1.1	16.7	1.8	1.5	1.8	1.5
	$B^0 \rightarrow \pi^- \ell^+ \nu$ FF	0.5	0.1	0.1	0.1	0.1	0.1	0.2	0.3	0.3	0.3	0.3	7.5	0.2	0.2	0.9	0.3
	Other scalar FF	1.0	0.3	0.5	0.5	0.4	0.3	0.3	0.7	1.7	2.1	2.1	8.7	0.4	0.3	0.6	0.3
	$B \rightarrow \omega \ell \nu FF$	0.5	0.1	0.1	0.1	0.1	0.1	0.2	0.3	0.5	0.6	0.6	18.2	0.2	0.2	1.8	0.5
	$\mathcal{B}(B \rightarrow D\ell\nu)$	0.5	0.6	0.2	0.1	0.3	0.2	0.5	0.3	0.4	0.4	0.4	5.7	0.2	0.3	0.7	0.4
	$\mathcal{B}(B \rightarrow D^* \ell \nu)$	0.6	0.3	0.2	0.3	0.4	0.3	0.3	0.5	0.4	0.3	0.5	5.7	0.3	0.3	0.7	0.4
	$B(B \rightarrow D^{**}\ell\nu)$	0.7	0.3	0.3	0.5	0.5	0.3	0.8	0.6	1.1	0.7	0.7	5.9	0.3	0.3	0.9	0.4
	Non resonant $b \rightarrow c\ell\nu$ BF	0.6	0.2	0.2	0.1	0.2	0.2	0.2	0.5	0.3	0.3	0.3	5.6	0.2	0.2	0.7	0.3
	$B \rightarrow D\ell\nu FF$ $B \rightarrow D\ell\nu FF$	0.5	0.2	0.3	0.1	0.2	0.1	0.2	0.4	0.4	0.3	0.4	5.7	0.2	0.2	0.7	0.3
	$B \rightarrow D^* \ell \nu FF$	0.6	0.2	0.2	0.4	0.2	1.0	0.6	2.0	0.4	0.7	1.2	7.0	0.2	0.3	1.0	0.5
	$\Upsilon(4S) \rightarrow B^0 \overline{B^0} BF$	1.4 4.1	1.7 3.1	1.2 2.1	1.3 1.2	1.3 1.7	1.3 0.5	1.5 1.2	1.2 0.5	1.4 0.5	1.4 0.9	1.0 3.7	5.9 5.9	1.3 1.0	1.4 0.9	1.2 1.2	1.3 0.9
	Secondary lepton Final state radiation	4.1 0.3	1.3	0.8	2.2	0.3	1.4	1.2	1.3	1.4	1.6	3.7 0.8	3.4	1.0	1.1	1.5	1.2
	B counting	1.1	1.3	1.1	1.1	1.1	1.4	1.2	1.3	1.4	1.0	1.1	1.1	1.1	1.1	1.5	1.2
	Fit bias	0.1	0.3	0.4	0.1	0.1	0.4	0.4	0.7	0.1	1.1	2.0	30.8	0.2	0.0	1.8	0.4
	Signal MC stat error	1.3	1.5	1.3	1.6	1.4	1.5	1.4	1.4	1.3	1.5	1.2	2.5	0.2	0.4	0.6	0.3
	Total systematic error	15.5	6.9	6.0	5.0	5.0	5.9	5.7	7.1	7.9	6.6	10.4	68.8	5.0	4.9	9.2	5.7
12 O	ctober 2010	14.7	11.9	9.0	9.3	9.4P	-Tar	as/F		M	ोगवा	r ki č				7.6	3.5
	Total error	21.4	13.8	10.8	10.6	10.7	11.1	12.2	14.3	15.0	14.4	20.5	89.2	6.3	6.2	12.0	6.7

 $B^0 \rightarrow \pi^- \ell^+ \nu$

Statistical and Systematic relative uncertainties

Decay mode	$\eta' \ell^+ \nu$	$\eta \ell^+ \nu (3\pi)$		$\eta \ell^+ \nu$	(yy)		$\eta \ell^+ \nu$	(3π ar	nd yy co	ombined)
q^2 bins (GeV ²)	Total	Total	0-4	4-8		Total	0-4	4-8	8-16	Total
Fitted yield	141.0	244.8	279.9	216.8	146.7	643.4	303.9	331.5	252.5	887.9
Systematic error	14.6	14.3	5.1	5.8	34.9	9.6	5.8	6.6	28.1	10.3
Fit error	32.8	25.6	13.9	17.2	33.9	12.0	14.1	14.2	26.6	11.0
Efficiency	0.61	0.59	2.01	2.55	1.42	-	2.53	3.41	1.94	-
Unfolded yield	141.0	244.8	299.1	210.9	133.3	643.4	319.3	334.8	233.9	887.9
ΔΒ	242.5	431.5	155.3	86.3	97.7	339.3	131.8	102.6	126.2	360.6
Tracking efficiency	5.2	4.1	3.2	2.4	14.6	2.6	2.1	2.0	11.1	2.8
Photon efficiency	5.6	3.1	10.1	4.3	27.4	7.0	8.0	3.8	9.0	5.7
K_L^0 efficiency	2.5	0.7	8.6	2.9	27.2	3.2	1.0	0.5	2.2	0.6
K_L^0 production spectrum	2.7	1.4	4.7	1.5	16.2	2.5	0.8	0.5	2.3	1.0
K_L^0 energy	1.1	1.4	0.6	0.5	2.5	0.9	0.6	0.4	2.3	1.0
ℓ identification	2.0	1.8	0.1	2.7	3.9	1.8	0.2	1.9	3.4	1.8
π identification	0.6	0.5	-	-	-	-	0.1	0.2	0.5	0.3
Bremsstrahlung	0.5	0.2	1.6	2.7	22.2	8.0	0.3	0.7	12.3	4.2
Continuum yield	4.9	1.1	-	-	-	-	-	-	-	-
q^2 continuum shape	5.2	2.6	2.6	1.5	4.5	0.5	2.4	0.7	2.8	0.3
$\mathcal{B}(B^0 \rightarrow \pi^- \ell^+ \nu)$	0.0	0.1	0.0	0.0	0.1	0.0	0.0	0.0	0.1	0.0
$B(B^+ \rightarrow \pi^0 \ell^+ \nu)$	0.2	0.0	0.4	0.9	5.2	1.9	0.3	0.6	2.9	1.3
$\mathcal{B}(B^+ \rightarrow \eta^{(\prime)}\ell^+\nu)$	0.4	0.4	0.0	0.1	0.8	0.2	0.1	0.1	1.0	0.4
$B(B^0 \rightarrow \rho^- \ell^+ \nu)$	0.3	0.5	0.1	1.1	6.9	2.3	0.1	0.6	4.2	1.7
$B(B^+ \rightarrow \rho^0 \ell^+ \nu)$	0.0	0.3	0.1	0.1	0.5	0.1	0.0	0.1	0.8	0.2
$B(B^+ \rightarrow \omega \ell^+ \nu)$	0.8	1.1	0.1	0.2	2.6	0.8	0.1	0.1	2.6	0.9
Non resonant $b \rightarrow u \ell \nu$ BF	2.3	3.5	0.4	0.9	9.5	3.1	0.5	0.6	8.6	3.4
η BF	3.1	1.2	0.5	0.7	0.7	0.6	0.5	0.6	0.7	0.5
SF parameters	4.3	6.3	1.4	2.7	16.8	6.1	1.5	2.5	14.3	6.2
$B \rightarrow \rho \ell \nu FF$	0.1	0.7	0.1	2.3	1.7	0.9	0.1	1.5	0.9	0.5
$B^+ \rightarrow \eta^{(\prime)} \ell^+ \nu FF$	1.1	1.0	0.1	0.1	1.4	0.4	0.1	0.1	1.5	0.6
Other scalar FF	2.9	4.2	7.7	1.4	0.1	3.2	0.7	0.1	0.0	0.2
$B \rightarrow \omega \ell \nu$ FF	1.2	2.1	0.1	0.5	2.8	0.7	0.1	0.4	3.9	1.3
$B(B \rightarrow D\ell\nu)$	1.6	0.7	0.3	0.7	0.6	0.3	0.3	0.7	0.7	0.4
$\mathcal{B}(B \rightarrow D^* \ell \nu)$	0.3	0.4	0.1	0.8	1.2	0.4	0.1	0.7	1.0	0.4
$\mathcal{B}(B \rightarrow D^{**}\ell\nu)$	2.0	1.2	0.6	0.9	2.5	0.7	0.6	0.7	2.6	0.9
Non resonant $b \rightarrow c \ell \nu$ BF	0.1	0.1	0.2	0.1	0.8	0.2	0.3	0.1	0.4	0.2
$B \rightarrow D\ell \nu$ FF	0.1	0.3	0.1	0.1	0.5	0.2	0.1	0.1	0.7	0.3
$B \rightarrow D^* \ell \nu$ FF	0.6	0.9	0.5	0.9	1.3	0.4	0.5	1.2	1.2	0.4
$B(\Upsilon(4S) \rightarrow B^0 \overline{B^0})$	1.1	1.2	1.4	1.1	0.9	1.2	1.4	1.2	1.0	1.2
Secondary lepton	4.2	5.0	1.3	0.7	9.1	2.1	1.2	1.6	9.3	3.0
B counting	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1
Signal MC stat error	1.2	1.1	1.4	1.6	1.2	0.7	1.3	1.3	1.0	0.5
Total systematic error	14.3	12.4	17.0	8.7	55.4	14.1	9.3	6.6	28.7	11.6
Fit error	212	ras/Flear		Uar	<u>(3</u> 28)	1001	OUS	16.6	30.3	12.5
Total error	35.8	28.4	22.4	22.7	67.9	19.6	17.8	17.8	41.8	17.0

12 October 2010

 $B \rightarrow \eta \ell \nu$

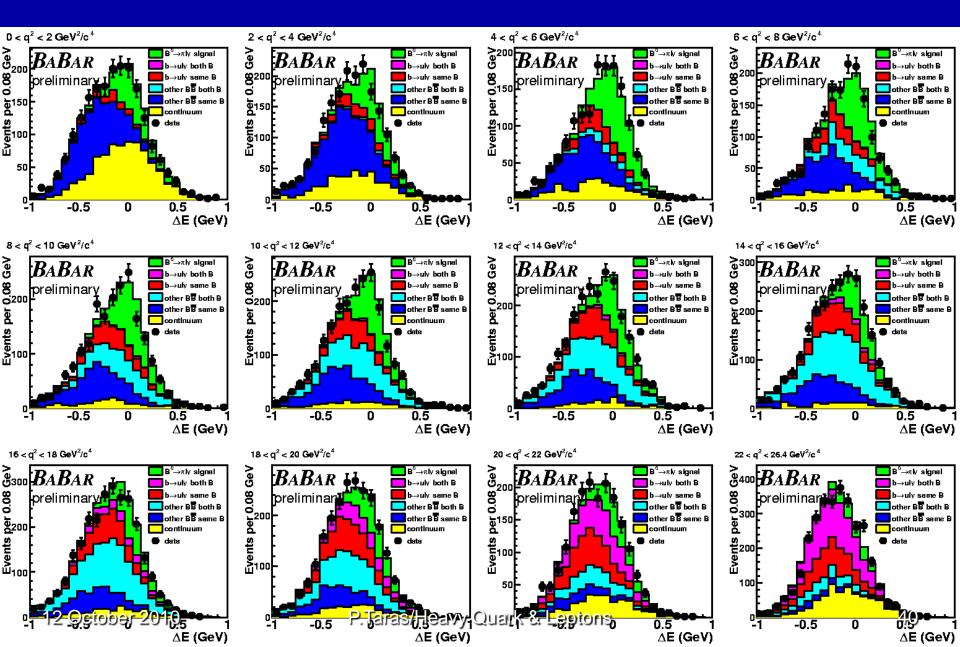
Correlation Matrices

 $B^0 \rightarrow \pi^- \ell^+ \nu$ Statistical

q^2 bins (GeV ²)	0-2	2-4	4-6	6-8	8-10	10-12	12-14	14-16	16-18	18-20	20-22	22-26.4
0-2	1.00	-0.16	0.17	0.02	-0.02	0.03	0.01	0.04	0.05	0.02	0.04	-0.00
2-4	-0.16	1.00	-0.32	0.11	0.00	-0.00	-0.01	0.01	0.01	-0.00	0.00	-0.00
4-6	0.17	-0.32	1.00	-0.30	0.15	0.02	0.06	0.06	0.07	0.00	0.01	0.01
6-8	0.02	0.11	-0.30	1.00	-0.22	0.13	0.07	0.06	0.07	0.00	0.00	0.02
8-10	-0.02	0.00	0.15	-0.22	1.00	-0.22	0.16	0.05	0.08	0.01	-0.00	0.02
10-12	0.03	-0.00	0.02	0.13	-0.22	1.00	-0.15	0.10	0.07	-0.01	0.02	0.00
12-14	0.01	-0.01	0.06	0.07	0.16	-0.15	1.00	-0.16	0.13	-0.01	0.05	-0.00
14-16	0.04	0.01	0.06	0.06	0.05	0.10	-0.16	1.00	-0.01	0.01	-0.02	-0.02
16-18	0.05	0.01	0.07	0.07	0.08	0.07	0.13	-0.01	1.00	-0.17	0.09	-0.08
18-20	0.02	-0.00	0.00	0.00	0.01	-0.01	-0.01	0.01	-0.17	1.00	0.05	-0.05
20-22	0.04	0.00	0.01	0.00	-0.00	0.02	0.05	-0.02	0.09	0.05	1.00	-0.35
22-26.4	-0.00	-0.00	0.01	0.02	0.02	0.00	-0.00	-0.02	-0.08	-0.05	-0.35	1.00

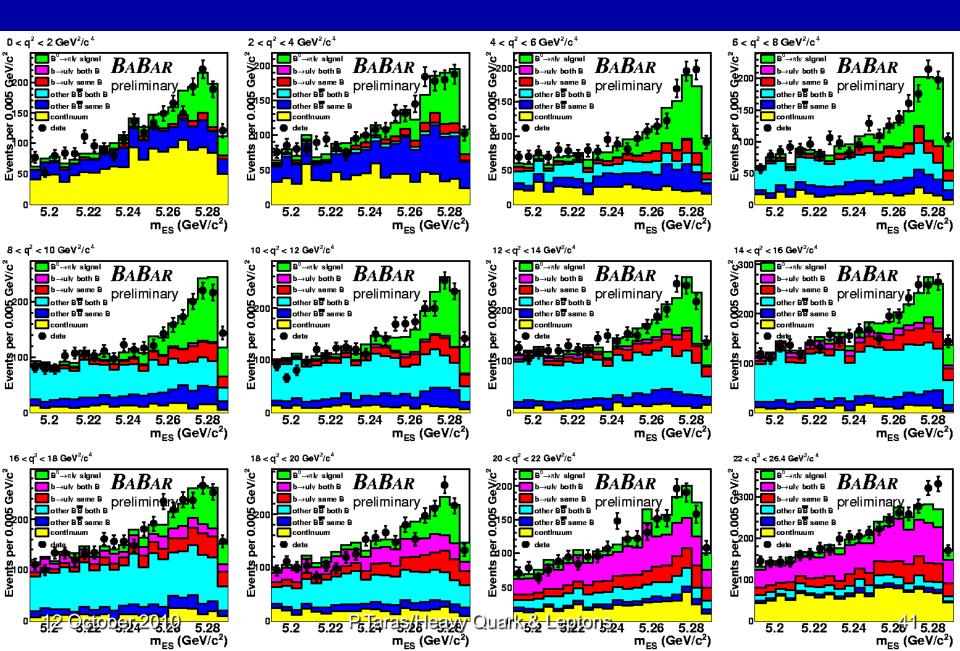
$B^0 \rightarrow \pi^- \ell^+ \nu$ Systematic

q^2 bins (GeV ²)	0-2	2-4	4-6	6-8	8-10	10-12	12-14	14-16	16-18	18-20	20-22	22-26.4
0-2	1.00	-0.19	0.41	0.33	0.49	0.42	0.49	0.35	0.39	0.14	0.47	0.56
2-4	-0.19	1.00	-0.17	0.08	-0.20	-0.07	-0.14	-0.16	-0.31	0.41	-0.24	0.05
4-6	0.41	-0.17	1.00	0.78	0.82	0.76	0.67	0.68	0.53	0.33	0.72	0.48
6-8	0.33	0.08	0.78	1.00	0.71	0.74	0.65	0.63	0.47	0.49	0.55	0.38
8-10	0.49	-0.20	0.82	0.71	1.00	0.74	0.70	0.70	0.49	0.36	0.66	0.39
10-12	0.42	-0.07	0.76	0.74	0.74	1.00	0.74	0.80	0.61	0.36	0.61	0.40
12-14	0.49	-0.14	0.67	0.65	0.70	0.74	1.00	0.69	0.73	0.29	0.55	0.36
14-16	0.35	-0.16	0.68	0.63	0.70	0.80	0.69	1.00	0.71	0.35	0.64	0.37
16-18	0.39	-0.31	0.53	0.47	0.49	0.61	0.73	0.71	1.00	-0.01	0.62	0.29
18-20	0.14	0.41	0.33	0.49	0.36	0.36	0.29	0.35	-0.01	1.00	0.04	0.20
20-22	0.47	-0.24	0.72	0.55	0.66	0.61	0.55	0.64	0.62	0.04	1.00	0.52
22-3624 Octob	- <u>25</u> 20	192	0.48	0.38	0.39	0.40	ിട്ട്	0.37/		_Δ 2:∂L		-Lanto


$B \rightarrow \eta \ell \nu$

	st	atistic	al	systematic		
q^2 bins (GeV ²)	0-4	4-8	8-16	0-4	4-8	8-16
0-4	1.00	-0.08	0.00	1.00	0.36	0.05
4-8	-0.08	1.00	-0.06	0.36	1.00	0.29
8-16	0.00	-0.06	1.00	0.05	0.29	1.00

IS


$B^0 \rightarrow \pi^- \ell^+ \nu$

Projections on Δ E axis

$B^0 \rightarrow \pi^- \ell^+ \nu$

Projections on m_{ES} axis

Branching fraction results

Total BF for $B^+ \rightarrow \eta' \ell^+ \nu : (2.43 \pm 0.80_{stat} \pm 0.34_{syst}) \times 10^{-5}$, significance of 2.67 σ

an order of magnitude smaller than most recent result of CLEO $(2.66 \pm 0.80_{stat} \pm 0.56_{syst}) \times 10^{-4}$

Total BF for $B^+ \to \eta \ell^+ \nu : (3.61 \pm 0.45_{stat} \pm 0.44_{syst}) \times 10^{-5}$, most precise, compatible with previous BaBar result : $(3.7 \pm 0.6_{stat} \pm 0.7_{syst}) \times 10^{-5}$

 $BF(B^+ \to \eta' \ell^+ \nu) / BF(B^+ \to \eta \ell^+ \nu) = 0.67 \pm 0.27$ allows an important gluonic singlet contribution to the η' form factor

12 October 2010

Backup Slides for π - ρ analysis

Statistical and Systematic relative uncertainties

	$B \rightarrow$	$\pi \ell \nu$.,
q^2 range (GeV ²)	0-4 4-8	8-12	12-16	16-20	>20	0-26.4		q^2 r
Track efficiency	$3.4 \ 1.5$	2.3	0.1	1.5	2.8	1.9		Tra
Photon efficiency	0.1 1.4	1.0	4.6	2.8	0.3	1.8		Pho
Lepton identification	3.8 1.6	1.9	1.8	1.9	3.0	1.8		Lep
K_L efficiency	1.0 0.1	0.5	4.5	0.4	2.0	1.4		K_L
K_L shower energy	$0.1 \ 0.1$	0.1	0.8	0.9	3.8	0.7		K_L
K_L spectrum	$1.6 \ 1.9$	2.2	3.1	4.4	2.3	2.5		K_L
$B \to \pi \ell \nu FF f_+$	$0.5 \ 0.5$	0.5	0.6	1.0	1.0	0.6		<i>B</i> -
$B \rightarrow \rho \ell \nu FFA_1$	$1.7 \ 1.2$	3.4	2.0	0.1	1.6	1.7		<i>B</i> -
$B \rightarrow \rho \ell \nu FFA_2$	1.3 0.8	2.6	1.0	0.1	0.4	1.1		<i>B</i> -
$B \rightarrow \rho \ell \nu FFV$	$0.2 \ 0.3$	0.9	0.7	0.1	0.5	0.5		B -
$\mathcal{B}(B^+ \to \omega \ell^+ \nu)$	0.1 0.1	0.1	0.2	0.3	1.5	0.2		$\mathcal{B}(I)$
$\mathcal{B}(B^+ \to \eta \ell^+ \nu)$	$0.1 \ 0.1$	0.2	0.2	0.2	0.5	0.2		$\mathcal{B}(I$
$\mathcal{B}(B^+ \to \eta' \ell^+ \nu)$	0.1 0.1	0.1	0.1	0.1	0.3	0.1		$\mathcal{B}(I)$
$\mathcal{B}(B \to X_u \ell \nu)$	$0.2 \ 0.1$	0.1	0.1	1.1	1.6	0.4		$\mathcal{B}(I$
$B \to X_u \ell \nu$ SF param.	$0.4 \ 0.1$	0.2	0.2	0.5	4.2	0.7		B -
$B \to D\ell\nu \ {\rm FF} \ \rho_D^2$	0.2 0.1	0.5	0.3	0.2	0.7	0.3		<i>B</i> -
$B \to D^* \ell \nu \ \mathrm{FF} \ R_1$	0.1 0.4	0.8	0.6	0.3	0.6	0.5		<i>B</i> –
$B \to D^* \ell \nu$ FF R_2	$0.5 \ 0.2$	0.1	0.2	0.1	0.4	0.2		<i>B</i> -
$B \to D^* \ell \nu$ FF $\rho_{D^*}^2$	$0.7 \ 0.2$	0.6	0.8	0.4	1.1	0.6		B –
$\mathcal{B}(B \to D\ell\nu)$	$0.2 \ 0.2$	0.3	0.4	0.5	0.5	0.3		$\mathcal{B}(I$
$\mathcal{B}(B \to D^* \ell \nu)$	$0.4 \ 0.1$	0.3	0.3	0.3	0.7	0.3		$\mathcal{B}(I)$
$\mathcal{B}(B \to D^{**}\ell\nu)_{narrow}$	$0.4 \ 0.1$	0.1	0.3	0.1	0.5	0.2		$\mathcal{B}(I)$
$\mathcal{B}(B \to D^{**} \ell \nu)_{broad}$	$0.1 \ 0.1$	0.1	0.5	0.1	0.2	0.2		$\mathcal{B}(I$
Secondary leptons	$0.5 \ 0.2$	0.3	0.2	0.2	0.7	0.3		Sec
Continuum	$5.3 \ 1.0$	2.6	1.8	3.1	6.1	2.0		Cor
Bremsstrahlung	0.3 0.1	0.1	0.1	0.1	0.4	0.2		Bre
Radiative corrections	$0.5 \ 0.1$	0.1	0.2	0.2	0.6	0.3		Rac
$N_{B\overline{B}}$	1.2 1.0	1.2	1.2	1.1	1.6	1.2		N_B
B lifetimes	0.3 0.3	0.3	0.3	0.3	0.7	0.3		B l
f_{\perp}/f_{90}	1.0 0.4	0.8	0.8	<u>05</u>	1,3	0.8	ork 9	$f_{\pm}/$
Total syst. error	8.2 3.9	6.7	8.3	r. Falla	90.6	ery Cu	ark &	김영 ট

2			
0-8			
3.2	2.9	0.3	2.5
2.6	2.0	2.6	2.4
5.7	3.0	4.0	3.4
10.3	1.2	4.9	4.8
1.6	0.8	1.0	1.1
4.2	6.1	7.0	5.7
0.1	0.1	0.7	0.2
10.7	6.6	4.5	7.5
8.5	3.8	0.8	4.7
3.4	3.0	3.6	3.2
0.7	0.7	3.4	1.2
0.8	0.1	0.6	0.4
0.8	0.5	1.2	0.7
7.4	7.3	10.6	8.0
11.9	7.6	12.8	10.0
0.9	0.2	0.1	0.4
0.7	0.1	0.3	0.3
1.7	0.1	0.2	0.6
2.0	0.2	0.1	0.7
1.6	0.3	0.1	0.7
0.5	0.1	0.3	0.3
1.3	0.1	0.1	0.5
0.7	0.1	0.1	0.3
1.5	0.1	0.1	0.5
8.9	3.8	5.0	4.0
0.9	0.1	0.2	0.4
1.3	0.1	0.7	0.6
2.7	2.0	2.5	2.3
1.5	0.4	0.4	0.7
1.2	0.1	0.1	0.4
	$\begin{array}{r} 3.2\\ 2.6\\ 5.7\\ 10.3\\ 1.6\\ 4.2\\ 0.1\\ 10.7\\ 8.5\\ 3.4\\ 0.7\\ 0.8\\ 7.4\\ 11.9\\ 0.9\\ 0.7\\ 1.7\\ 2.0\\ 1.6\\ 0.5\\ 1.3\\ 0.7\\ 1.5\\ 8.9\\ 0.9\\ 1.3\\ 2.7\\ 1.5\\ \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

4444

Correlation Matrices

$B \rightarrow \pi \ell \nu$ Statistical

q^2 range (GeV ²)	0-4	4-8	8-12	12-16	16-20	>20
0-4	1.000	0.191	0.050	-0.005	0.068	0.057
4-8		1.000	0.089	0.058	0.085	0.011
8-12			1.000	0.197	0.127	0.005
12-16				1.000	0.135	-0.008
16-20					1.000	0.032
>20						1.000

$B \rightarrow \pi \ell \nu$ Systematic

q^2 range (GeV ²)	0-4	4-8	8-12	12-16	16-20	>20
0-4	1.000	0.521	0.705	0.394	-0.052	0.075
4-8		1.000	0.853	0.687	0.605	0.478
8-12			1.000	0.652	0.366	0.439
12-16				1.000	0.637	0.367
16-20					1.000	0.509
>20						1.000

	Ε	3 →ρℓ	ν	$B \rightarrow \rho \ell \nu$			
	Sta	atistic	al	Systematic			
q^2 range (GeV ²)				0-8			
0-8	1.000	0.264	0.137	1.000	0.339	0.692	
8-16		1.000	0.189		1.000	0.296	
>16			1.000			1.000	
PEParens/Eleanvy=Quark=&=Eepions							

12 October 2010