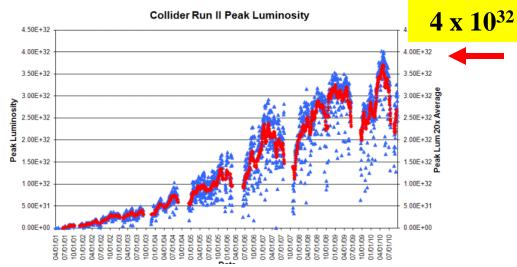


Top quark physics at CDF: status and prospects

Sandra Leone
(INFN Pisa)
for the CDF Collaboration

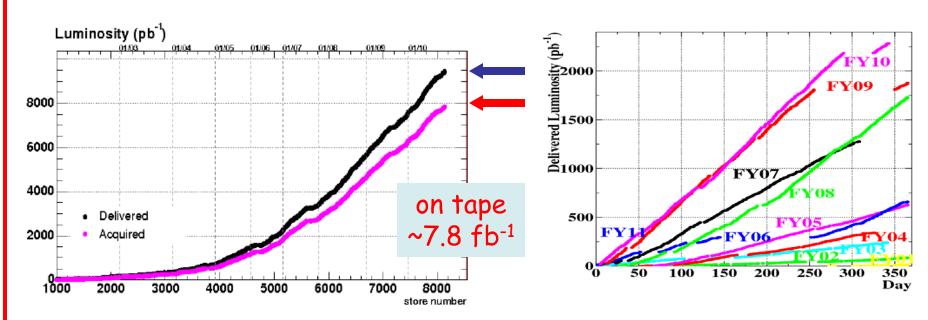
Outline

- The Tevatron & CDF
- Exploring top quark physics at the Tevatron:
 - ✓ Pair production cross section
 - ✓ Single top production
 - √Top mass and other properties
 - ✓ Search for new physics in top sample
- Prospects & Conclusion


Tevatron Performances

Run II: √s = 1.96 TeV

Performances have kept improving since the start of Run II.

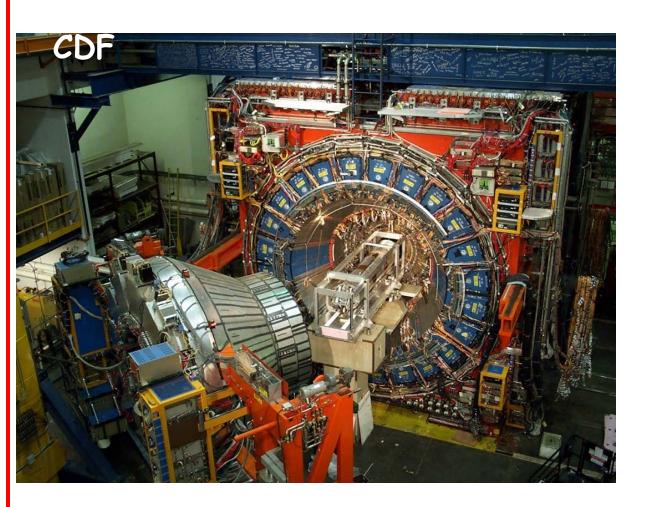


Peak luminosity

Accelerator complex breaking records all the time: Peak Luminosity record $\sim 4\cdot10^{32}$ cm⁻² s⁻¹ Weekly integrated luminosity record 73 pb⁻¹

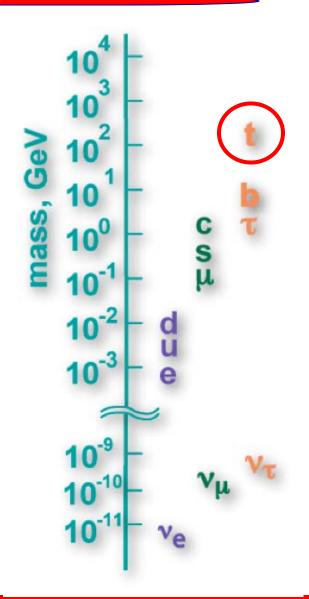
Integrated Luminosity

delivered: ~ 9.4 fb-1

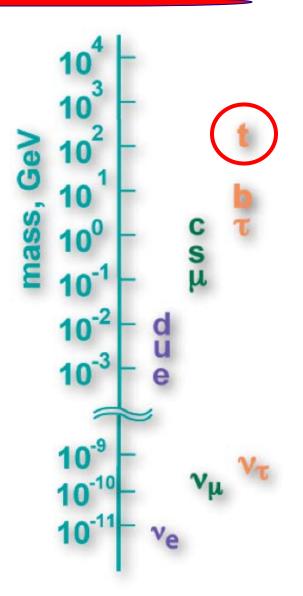

We have collected > 100 times more data than what was used to discover the top quark.

Detector running stably since Feb. '02

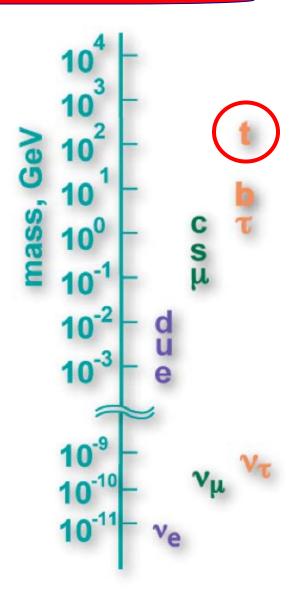
Data taking efficiency L(recorded)/L(delivered) commonly > 85% All results shown in the following based on datasets up to 5.7 fb⁻¹



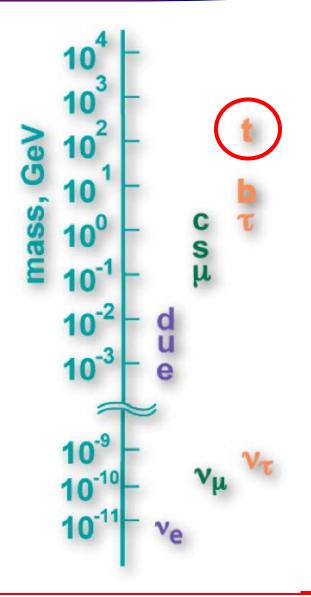
The CDF Experiment


- CDF is a general purpose detector, capable of many different physics measurements
- Large international collaboration, 500+ members

- Top quark discovered in 1995 at the Tevatron
- It is a very special particle:
 - ⇒ Heavier than all known particles
 - \Rightarrow Decays before hadronizing: Γ_{top} =1.5 GeV > Λ_{QCD}

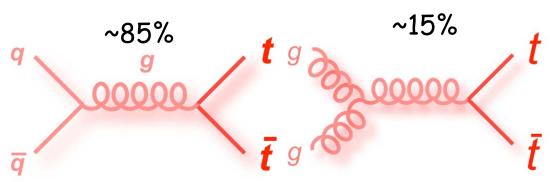


- Top quark discovered in 1995 at the Tevatron
- It is a very special particle:
 - ⇒ Heavier than all known particles
 - \Rightarrow Decays before hadronizing: Γ_{top} =1.5 GeV > Λ_{QCD}


 Since mechanism for EWSB couples to mass, top quarks may be good place to look for evidence of New Physics:

- Top quark discovered in 1995 at the Tevatron
- It is a very special particle:
 - ⇒ Heavier than all known particles
 - \Rightarrow Decays before hadronizing: Γ_{top} =1.5 GeV > Λ_{QCD}
- Since mechanism for EWSB couples to mass, top quarks may be good place to look for evidence of New Physics:
 - ⇒ might affect top-quark production
 - ⇒ might affect top-quark decay
 - ⇒ might affect top-quark properties
 - ⇒ might "contaminate" top-quark event samples

- Top quark discovered in 1995 at the Tevatron
- It is a very special particle:
 - ⇒ Heavier than all known particles
 - \Rightarrow Decays before hadronizing: Γ_{top} =1.5 GeV > Λ_{QCD}
- Since mechanism for EWSB couples to mass, top quarks may be good place to look for evidence of New Physics:
 - ⇒ might affect top-quark production
 - ⇒ might affect top-quark decay
 - ⇒ might affect top-quark properties
 - ⇒ might "contaminate" top-quark event samples
- Tevatron program explores all these possibilities

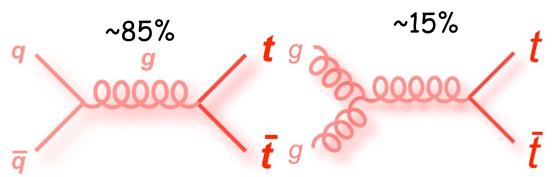


Top Quark Production at Tevatron

QCD pair production

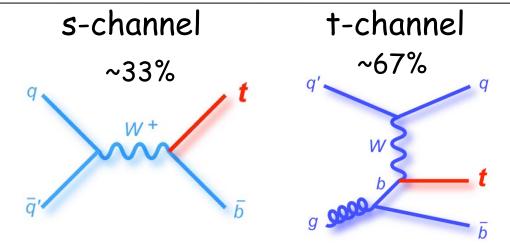
$$\sigma_{NNLO} = 7.4^{+0.5}_{-0.7} \text{ pb}$$
 (for $m_{Top} = 172.5 \text{ GeV}$)

JHEP 0809, 127 (2008)



Top Quark Production at Tevatron

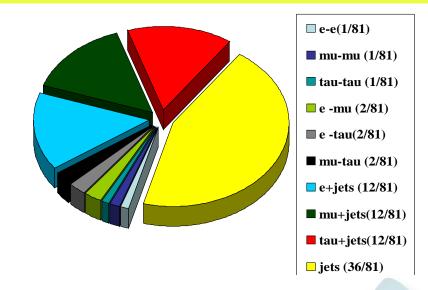
QCD pair production


$$\sigma_{NNLO} = 7.4^{+0.5}_{-0.7} \text{ pb}$$
 (for $m_{Top} = 172.5 \text{ GeV}$)

JHEP 0809, 127 (2008)

EWK single-top production

- > s-channel: $\sigma_{NLO} = 0.9 \text{ pb}$
- t-channel: σ_{NLO} = 2.0 pb (Both for m_{Top}= 175 GeV) PRD 66, 054024 (2002)



■ σ smaller than top pair production, but \rightarrow allows direct access to V_{tb} CKM matrix element: cross section $\propto |V_{tb}|^2$

Top Quark Decay

$t - \frac{\mathbf{V_{tb}}}{b}$

SM predicts BR($t \rightarrow Wb$) $\approx 100\%$

b jets are always present Displaced tracks Decay lifetime Lxy Primary vertex Prompt tracks

For ttbar pairs:

Event topology determined by the decay modes of the 2 W's in final state. Always b jets are present

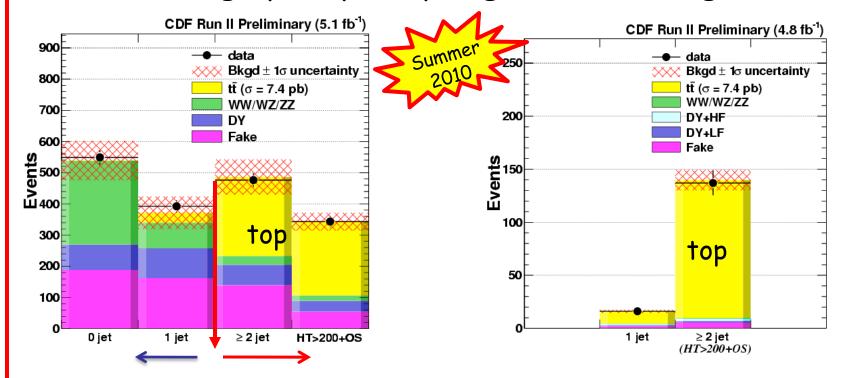
Dilepton (ee, μμ, eμ)

$$\Rightarrow$$
BR = 5%, 2 high-P_T leptons + 2 b-
jets + large missing-E_T

Lepton (e or μ) + jets

$$\Rightarrow$$
BR = 30%, single lepton + 4 jets (2 from b's) + missing- E_T

• All Hadronic:

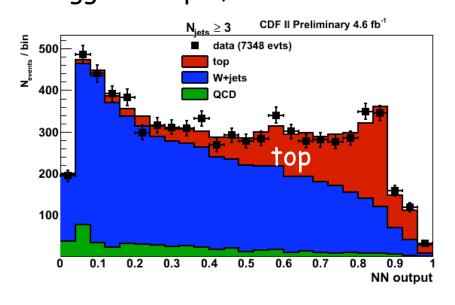

$$\Rightarrow$$
BR = 44%, six jets, no missing-ET

• τ had +X

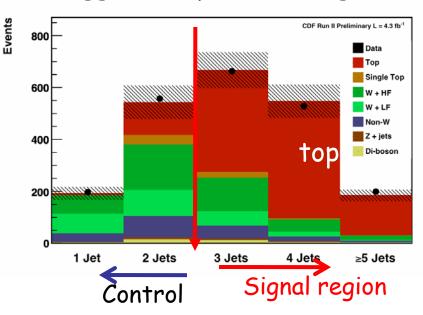
Top pair production: Dilepton Channel

High purity sample, good test of signal model

Control Signal region


CDF (4.8 fb⁻¹, m_t= 172.5 GeV), b-tagged, $\sigma_{tt}(dil)=7.25\pm0.7(stat)\pm0.5(syst)\pm0.4(lum)pb$

CDF (5.1 fb⁻¹, m_t= 172.5 GeV), pre-tagged, σ_{tt} (dil)=7.4±0.6(stat)±0.6(syst)±0.5(lum) pb



Top pair production: Lepton +Jets

Pre-tagged sample, NN discriminant

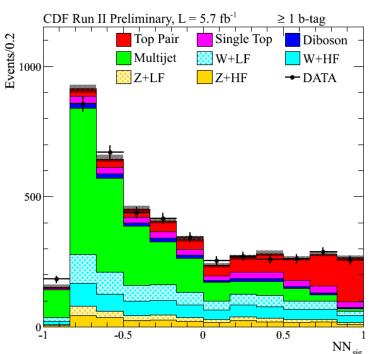
B-tagged sample, counting events

- Luminosity is the largest uncertainty in both measurements (6%)
 - Reduce by normalizing to the measured Z cross section
 - Measure R and multiply by Z cross section from theory: $\sigma_{tt} = R \bullet \sigma_{Z}^{theory}$

CDF (4.6 fb⁻¹,m_t= 172.5 GeV), pre-tagged σ_{tt} =7.82±0.38(stat)±0.37(syst)±0.15(theo) pb

CDF (4.3 fb⁻¹,m_t= 172.5 GeV), b-tagged: σ_{tt} =7.32±0.36(stat)±0.59(syst)±0.14(theo)pb

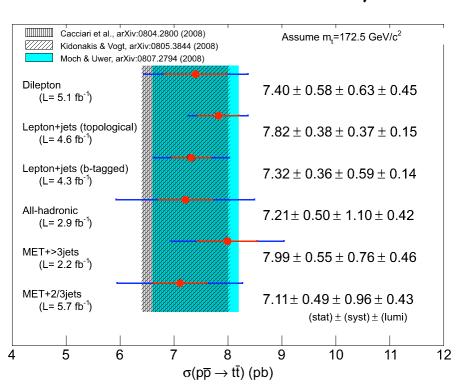
Combined: $\sigma_{tt} = 7.70 \pm 0.52 \text{ pb}$


PRL 105 012001 (2010)

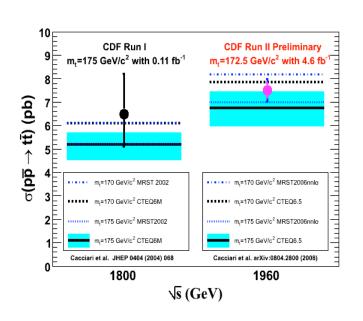
Missing energy plus b jets

- MET + jets:
 - ⇒ Independent from "lepton+jets" channel
 - ⇒ Interesting channel to searches for new physics (i.e. low mass Higgs)
- 2 or 3 identified jets, at least one b-tagged jet
- NN trained against QCD background

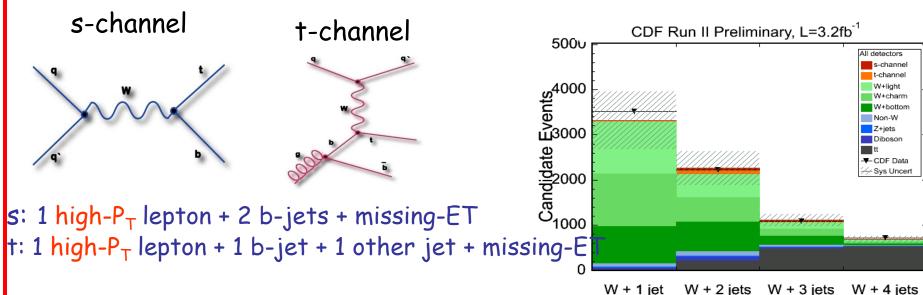
Another NN to isolate top pair from remaining background


CDF (5.7 fb⁻¹, m_t = 172.5 GeV):

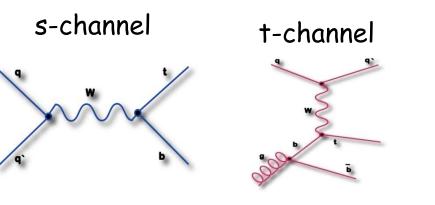
 σ_{tt} = 7.12 ^{+1.20} _{-1.12} (stat+syst+lumi) pb

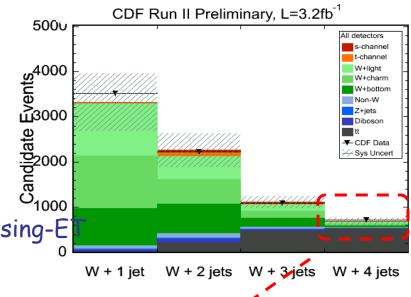

Measurements of σ_{tt}

- Experimental uncertainty: $\Delta \sigma / \sigma \sim 6.5\%$
- Dominant exp. uncertainties: JES, b-tag accept., W+bjet background
- \bullet of is measured in all final states: first step of any analysis studying the top quark properties.
- Tevatron combination underway



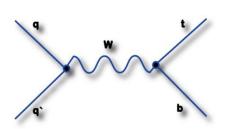
$$\sigma_{tt} = \frac{N_{Data} - N_{Background}}{Acc \int L dt}$$

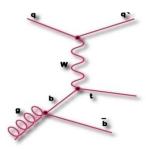

Consistent across channels, methods



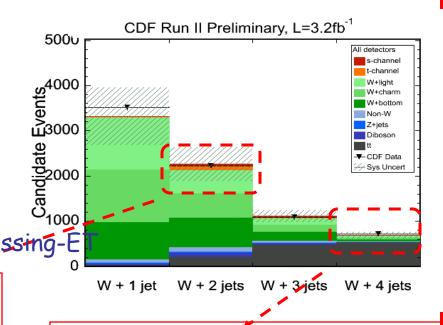
s: 1 high- P_T lepton + 2 b-jets + missing-ET

t: 1 high- P_T lepton + 1 b-jet + 1 other jet + missing- E_1


Top-pair has better s/b and very distinct final state:

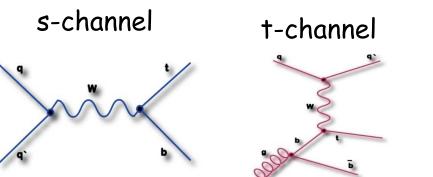

→ Counting experiment after b-quark tagging 'fairly easy'

t-channel



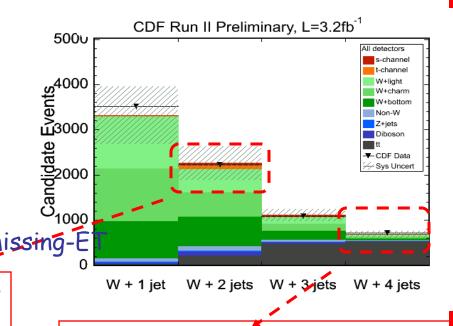
s: 1 high- P_T lepton + 2 b-jets + missing-ET \mathcal{S}_{1000} t: 1 high- P_T lepton + 1 b-jet + 1 other jet + missing-E

Single top hidden behind large backgrounds with large uncertainties


- →Makes counting experiment impossible!
- →s-channel single top has the same final state as WH→lvbb
 - →benchmark for WH Higgs search!

Top-pair has better s/b and very distinct final state:

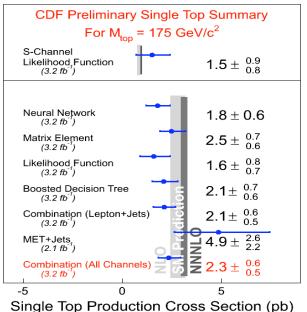
→ Counting experiment after b-quark tagging 'fairly easy'



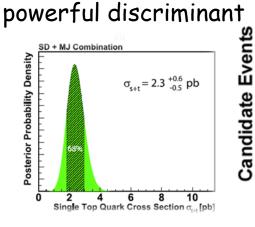
s: 1 high- P_T lepton + 2 b-jets + missing-ET 3_{1000} t: 1 high- P_T lepton + 1 b-jet + 1 other jet + missing-E

Single top hidden behind large backgrounds with large uncertainties

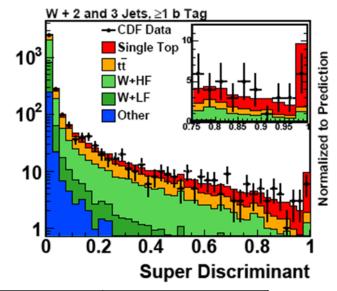
- →Makes counting experiment impossible!
- os-channel single top has the same final state as WHolimeslimesbb
 - →benchmark for WH Higgs search!


Top-pair has better s/b and very distinct final state:

- → Counting experiment after b-quark tagging 'fairly easy'
- Single top requires more sophisticated techniques: no single variable provides significant signal-background separation
- ⇒ Perform multivariate analysis (MV)
- \Rightarrow take advantage of small signal-background separation in many variables



Single Top Observation


CDF and DO both report >50 observation March 2009

The various MV methods give consistent results Combine the separate MVAs into one, more

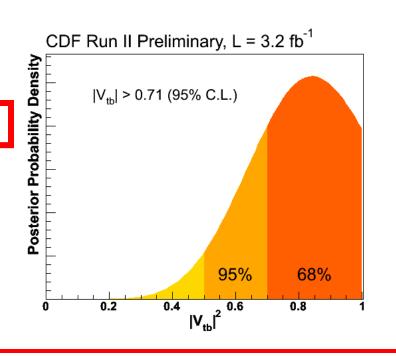
	Lumi (fb-1)	Cross Section(pb)	Exp Signif	Obs Signif
CDF	3.2	2.3 ^{+0.6} _{-0.5}	5.9σ	5.0σ

Tevatron (3.2 fb⁻¹), fb⁻¹,m_t= 175 GeV:
$$\sigma_t = 2.76^{+0.58}_{-0.47}$$
 (stat+syst) pb

Direct |V_{tb}| measurement

- •Using cross section result to measure $|V_{tb}|$: $\sigma_{single top} \propto |V_{tb}|^2$
- Assume Standard Model (V-A) coupling and $|V_{tb}| \gg |V_{ts}|$, $|V_{td}|$ (from BR(t \rightarrow Wb) meas.)
- Measurement assumes SM production mechanisms, does not assume 3 generations or unitarity

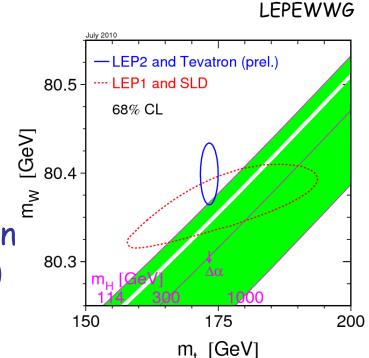
$$|V_{tb,meas}|^2 = rac{\sigma_{meas}}{\sigma_{SM}} \cdot |V_{tb,SM}|^2$$

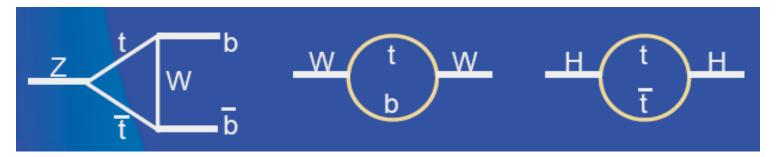

 $|V_{tb}| = 0.91 \pm 0.11$ (stat+syst) ± 0.07 (theory)

|V_{tb}|>0.71 at 95% C.L.

Best direct measurement of V_{tb}:

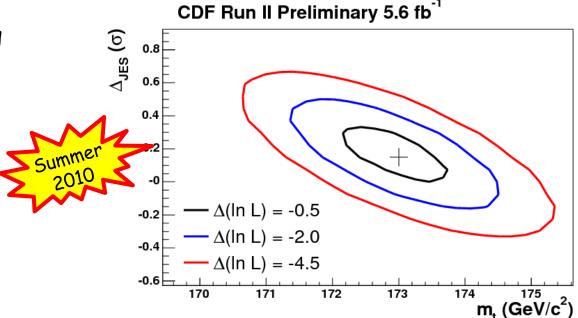
Tevatron (3.2 fb⁻¹):


 $|V_{tb}| = 0.91 \pm 0.08 \text{ (stat+syst)}$


Top quark mass

 M_{top} is a free parameter of the Standard Model

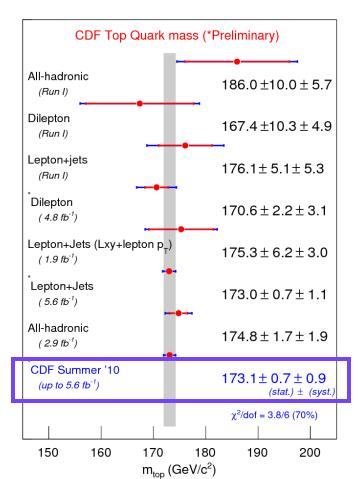
Since M_{top} is large, quantum loops involving top quarks are important to include when calculating precision observables (e.g. $sin\theta_W^2$, R_b , M_W , ...)

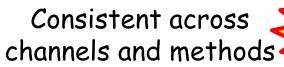

• Within SM, with the measured W mass constrains the mass of the Higg through radiative corrections

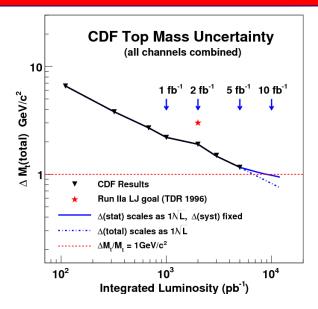
Top mass: most precise single result

- Matrix Element Technique in Lepton+Jets channel:
- ■The probability of being signal or background is calculated per event as a function of M_{top}
- Jet Energy Scale is reduced by measuring simultaneously with M_{top}

This is the best individual top mass measurement in the world to date


CDF (5.6 fb⁻¹):

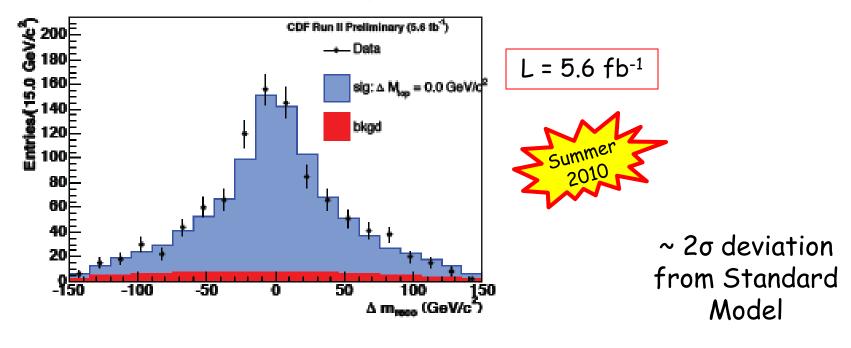

$$m_t=173.0\pm0.7(stat)\pm0.6(JES)\pm0.9$$
 (syst) GeV



CDF top mass summary

- Current CDF precision = 1.2 GeV/ $c^2 \Delta M/M\sim0.67$ %
- Have surpassed Run II goal by a factor of > 2
- 1 GeV/c² precision might be possible without any improvement at 10 fb⁻¹

Tevatron July 2010 combination:

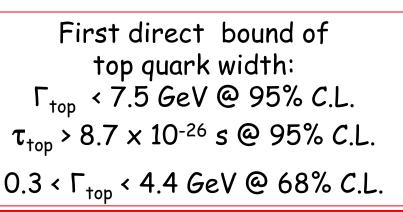

$$M_{top} = 173.3 \pm 1.1 \text{ (total) } GeV/c^2$$

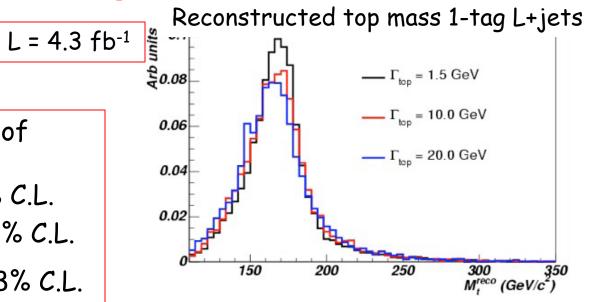
 $\Delta M/M \sim 0.61 \%$

Summer

Top Anti-Top Mass Difference

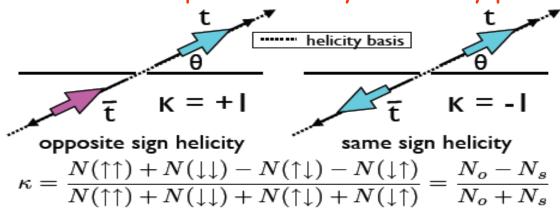
- If CPT is conserved, Mt = Mtbar
- Mass measurements until now have held this assumption
- Similar techniques to mass measurements: template technique in the lepton+jets channel




 $\Delta M = -3.3 \pm 1.4(stat) + 1.0(syst) GeV/c^2$

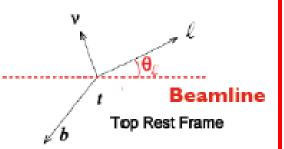
Top Width

- Top decays very quickly:
 - \Rightarrow No direct detection -> its properties from decay product
 - \Rightarrow SM predicts Γ_{top} = 1.3 GeV
- Direct measurement:
 - ⇒Reconstruct top mass event-by-event in lepton + jets
 - ⇒Extract width from fitting data to templates



Top anti-Top Spin Correlations

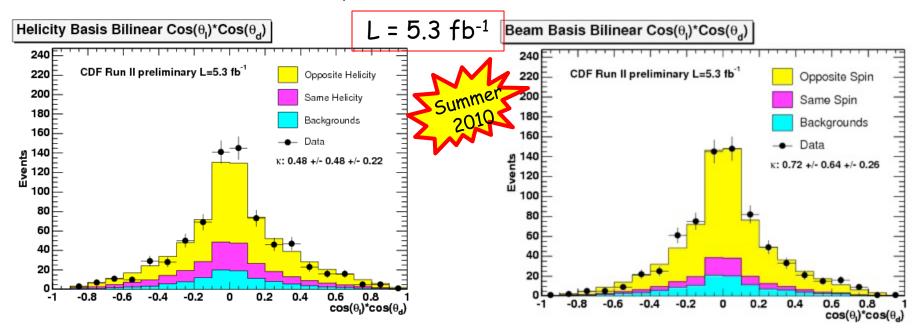
- Top spins are correlated only if top lifetime is short enough
- Information on of the spin carried by the decay products



- SM predicts K=0.78 NPB690, 81 (2004)
- New physics could change the spin-correlation parameter PRD 45 124(1992), PRD75 095008 (2007)

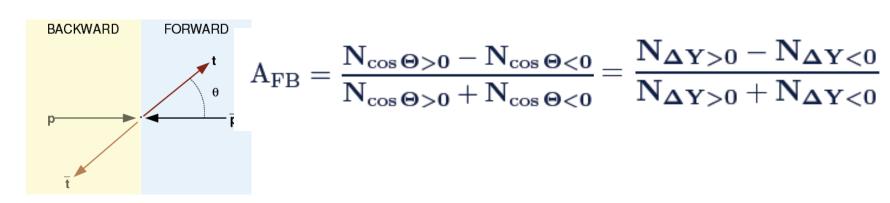
к related to decay products angle through:

$$rac{1}{\sigma}rac{\mathrm{d}^2\sigma}{\mathrm{d}\mathrm{cos} heta^+\mathrm{d}\mathrm{cos} heta^-} = rac{1+\kappa\;\mathrm{cos} heta^+\mathrm{cos} heta^-}{4}$$


where:

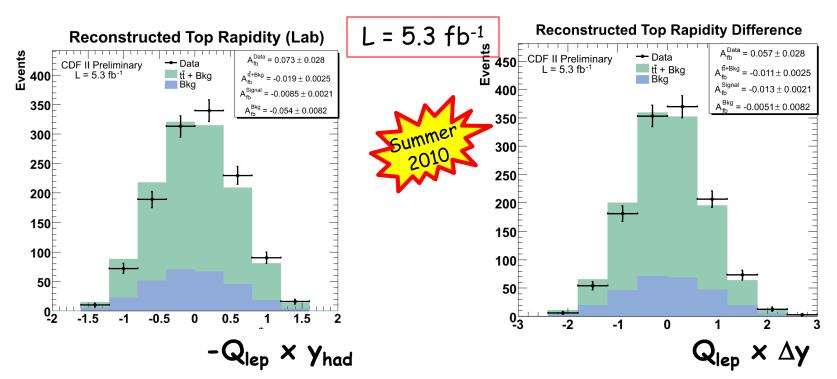
Top anti-Top Spin Correlations

Lepton+Jets Channel


Basis	NLO Expectation	Measured
Helicity	к = 0.35	κ = 0.48 ± 0.48stat ± 0.22syst
Beam	κ = 0.77	κ = 0.72 ± 0.64stat ± 0.26syst

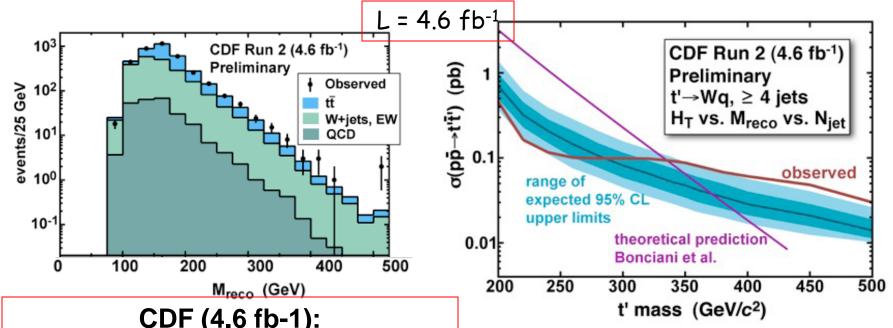
NPB690, 81 (2004)

Forward-Backward Asymmetry


- In leading order QCD, top production is symmetric.
- NLO QCD predicts small asymmetry:
 - \Rightarrow $A_{\rm fb}$ = 3.8 ± 0.6 % in lab frame
 - \Rightarrow $A_{\rm fb}$ = 5.8 ± 0.9 % in ttbar rest frame
- New physics could give rise to a bigger asymmetry (Z',axigluons,..)

- Reconstruct the rapidity of top and anti-top quarks
- $\cos \Theta_{\text{ttbar}} \square \mathbf{Y}_{\text{t}} \mathbf{Y}_{\text{tbar}} = \Delta \mathbf{Y}$

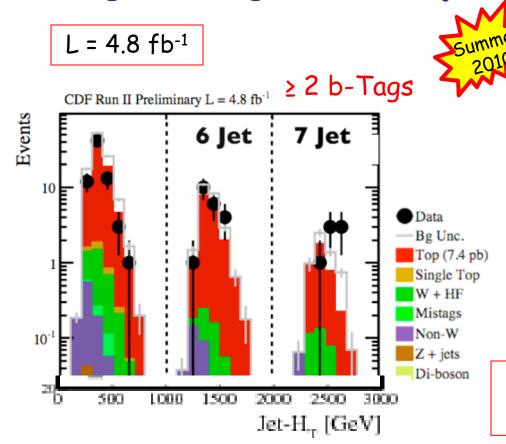
Forward-Backward Asymmetry

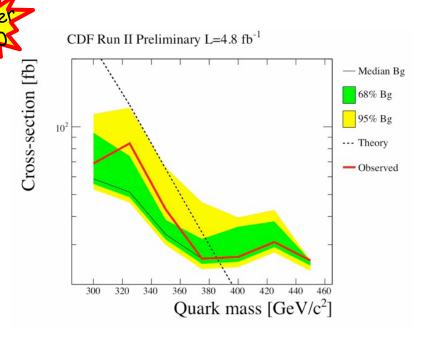

After unfolding to parton level:

Afb	Measured	MCFM Predicted	Signif. from 0
Lab frame	15.0 ± 5.0stat ± 2.4sys%	3.8 ± 0.6%	2.7
t-tbar frame	15.8 ± 7.2stat ± 1.7sys%	5.8 ± 0.9%	2.1

Search for Heavy t'

- Why are there only 3 generations? No theoretical reason
- Heavy t'production
 - \Rightarrow suggested in 4th generation models, little Higgs, etc.
- Search for t't' in Lepton + Jets, treat t' as just a more massive top quark ($t' \rightarrow Wq$, where q is a down-type quark q = d,s,b)


CDF (4.6 fb-1):


 $M(t') > 335 \text{ GeV/c}^2 \text{ at } 95\% \text{ C.L.}$

Search for b' -> t W -> WWb

- Signature is very energetic events, with many jets
- search in lepton +jets, high H_T , high jet multiplicity
- Largest background is tt+jets

CDF (4.8 fb-1): $M(b') > 385 \text{ GeV/c}^2 \text{ at } 95\% \text{ C.L.}$

- Top quark production and decay are currently being studied at Tevatron
 - ⇒ So far top quark seems to be Standard Model top quark
 - √ ttbar cross section known to 6.5% (better than theory!)
 - ✓ Mass measured to 0.6% precision
 - ⇒ Single top quarks have been observed, Vtb directly measured
 - ⇒ Many top measurements are statistically limited

- Top quark production and decay are currently being studied at Tevatron
 - ⇒ So far top quark seems to be Standard Model top quark
 - √ ttbar cross section known to 6.5% (better than theory!)
 - ✓ Mass measured to 0.6% precision
 - ⇒ Single top quarks have been observed, Vtb directly measured
 - ⇒ Many top measurements are statistically limited
- CDF expects to analyze ~ 10 fb⁻¹ of data by the end of 2011

- Top quark production and decay are currently being studied at Tevatron
 - ⇒ So far top quark seems to be Standard Model top quark
 - √ ttbar cross section known to 6.5% (better than theory!)
 - ✓ Mass measured to 0.6% precision
 - ⇒ Single top quarks have been observed, V_{tb} directly measured
 - ⇒ Many top measurements are statistically limited
- CDF expects to analyze ~ 10 fb⁻¹ of data by the end of 2011
- Run III would provide the opportunity to do precision top physics being complementary to the LHC, and having by 2013 roughly similar number of events

- Top quark production and decay are currently being studied at Tevatron
 - ⇒ So far top quark seems to be Standard Model top quark
 - ✓ ttbar cross section known to 6.5% (better than theory!)
 - ✓ Mass measured to 0.6% precision
 - ⇒ Single top quarks have been observed, V_{tb} directly measured
 - ⇒ Many top measurements are statistically limited
- CDF expects to analyze ~ 10 fb⁻¹ of data by the end of 2011
- Run III would provide the opportunity to do precision top physics being complementary to the LHC, and having by 2013 roughly similar number of events
- Tevatron's top physics program and understanding of systematic effects will continue to play a significant role for years to come

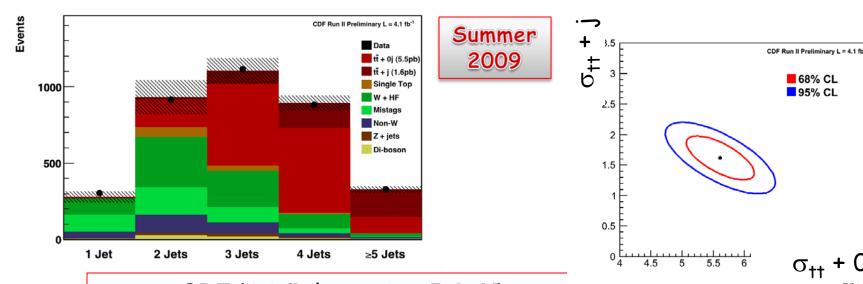
- Top quark production and decay are currently being studied at Tevatron
 - ⇒ So far top quark seems to be Standard Model top quark
 - √ ttbar cross section known to 6.5% (better than theory!)
 - ✓ Mass measured to 0.6% precision
 - ⇒ Single top quarks have been observed, V_{tb} directly measured
 - ⇒ Many top measurements are statistically limited
- CDF expects to analyze ~ 10 fb⁻¹ of data by the end of 2011
- Run III would provide the opportunity to do precision top physics being complementary to the LHC, and having by 2013 roughly similar number of events
- Tevatron's top physics program and understanding of systematic effects will continue to play a significant role for years to come

Thank you!

http://www-cdf.fnal.gov/physics/new/top/top.html

For more information:

Top Physics Results at CDF


http://www-cdf.fnal.gov/physics/new/top/top.html

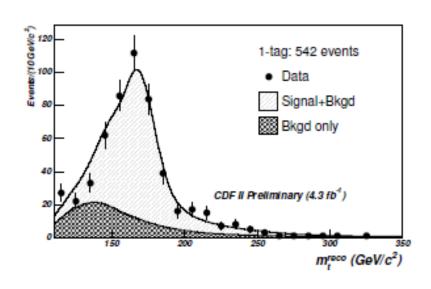
BACKUP

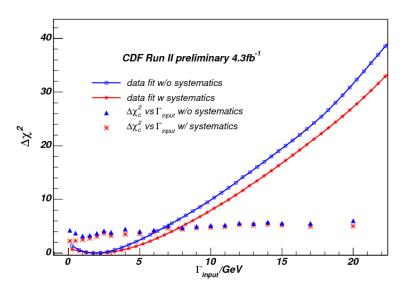
t-tbar + jet Cross Section

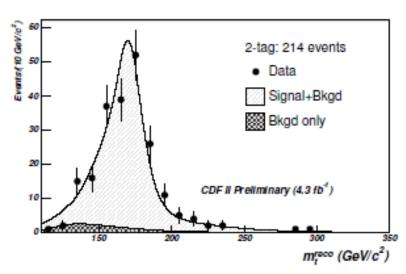
- First σ measurement of t-tbar associated with an additional hard jet
- Important test of perturbative QCD
- Use b-tagged events in lepton + jets channel.
- Data-driven approach is used to predict the background content
- Standard model prediction $\sigma_{tt+j} = 1.79^{+0.16}_{-0.31}$ pb (EPJ C59 625 (2009))

CDF (4.1 fb⁻¹, m_t= 172.5 GeV): σ_{tt} (tt+j)=1.6±0.2(stat)± 0.5(syst) pb

Top mass: most precise single result

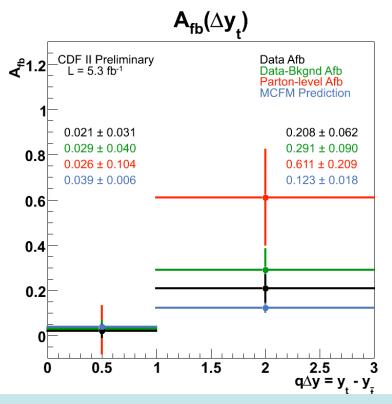

CDF Run II Preliminary, 5.6 fb⁻¹


	4	- 2
Background	1 tag	$\geq 2 \text{ tags}$
non-W QCD	50.1 ± 25.5	5.5 ± 3.8
W+light mistag	48.5 ± 17.1	1.0 ± 0.4
diboson (WW, WZ, ZZ)	10.5 ± 1.1	1.0 ± 0.1
$Z \rightarrow \ell\ell + \mathrm{jets}$	9.9 ± 1.3	0.8 ± 0.1
$W + b\bar{b}$	67.5 ± 23.9	12.9 ± 4.7
$W + c\bar{c}$	41.3 ± 14.8	1.9 ± 0.7
W + c	20.7 ± 7.4	0.9 ± 0.4
Single top	13.3 ± 0.9	4.0 ± 0.4
Total background	261.8 ± 60.6	28.0 ± 9.6
Predicted top signal ($\sigma = 7.4 \text{ pb}$)	767.3 ± 97.2	276.5 ± 43.0
Events observed	1016	247


CDF Run II Preliminary, 5.6 fb⁻¹

J 7	
Systematic source	Systematic uncertainty (GeV/c^2)
Calibration	0.10
MC generator	0.37
ISR and FSR	0.15
Residual JES	0.49
b-JES	0.26
Lepton P_T	0.14
Multiple hadron interactions	0.10
PDFs	0.14
Background modeling	0.34
Gluon fraction	0.03
Color reconnection	0.37
Total	0.88

Top quark width



Summary of shift top width due to systematic effects. All numbers have units of GeV.

CDF Run II Preliminary, 4.3 fb⁻¹ Systematic (GeV) $\Delta\Gamma_{top}$ Residual JES 0.3 Jet Resolution 1.1 Generator: 0.4PDFs 0.3b jet energy 0.2Background shape 0.1gg fraction 0.3Radiation 0.2Lepton energy 0.2Multiple Hadron Interaction 0.3Color Reconnection 0.9Total Effect 1.6

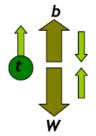
Forward-Backward Asymmetry

Study rapidity dependence using Atthan

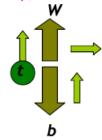
$$\Delta y < 1.0 : A_{FB} = 0.026 \pm 0.104_{stat} \pm 0.055_{syst}$$

$$\Delta y > 1.0$$
: $A_{FB} = 0.611 \pm 0.210_{stat} \pm 0.141_{syst}$

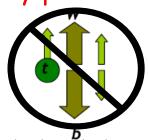
MCFM: $0.039 \pm 0.006 (<1)$, $0.123 \pm 0.018 (>1)$



W Helicity in top decay

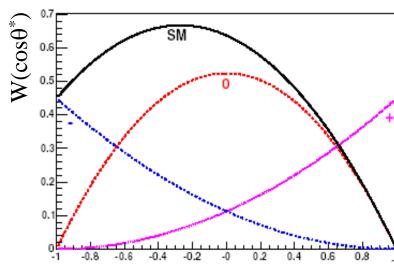

W helicity in top decays is fixed by M_{top} , M_W , and V-A structure of the tWb vertex. It is reflected in kinematics of W decay products.

W helicity states:


In Standard Model:

left-handed fraction: f₋ ~30%

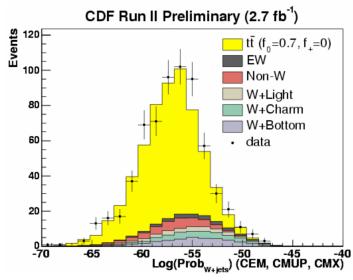
longitudinal fraction: f_0 ~70%



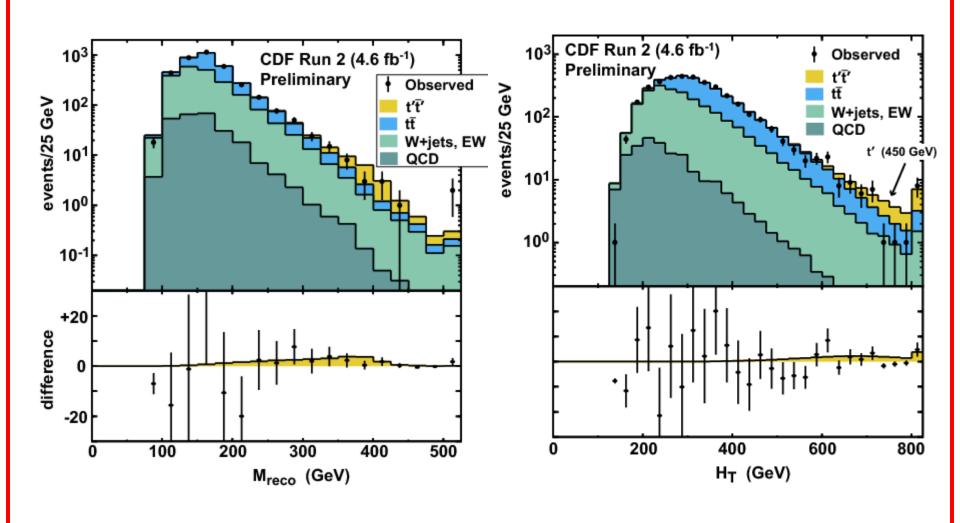
right-handed fraction: f₊

suppressed: ~0.036%

 \Rightarrow Measure angular distribution of charged lepton wrt. top in W rest frame: $\cos\theta^*$



W Helicity in Top Decay


- Using Matrix Element Method, express probability of each event in terms of ttbar and background (W+jets) production
- Use the probabilities to compute a log-likelihood function in terms of the helicity fractions and the signal purity coefficient

Results consistent with the Standard Model

Method	f+	fO
Simultaneous	-0.15 ± 0.07stat ± 0.06sys	0.88 ± 0.11stat ± 0.06sys
Fixed f+	0.00	0.70 ± 0.07stat ± 0.04sys
Fixed FO	-0.01 ± 0.02stat ± 0.05sys	0.70

Search for t'

