New cLFV search experiments using the mu-e conversion process Satoshi MIHARA KEK, Japan

Outline

- Muon in Particle Physics from an experimentalist point of view
- Why Muon cLFV ?
- Mu-e conversion search experiments
- Summary

Muon in Particle

Physics

• Muon discovery in 1936

- 1st µ→ eγ search in 1947 by Hincks and Pontecorvo
 - "meson" → ev hypothesis not consistent with an experiment
 - Verification of eγ hypothesis
- Theoretical calc. of Br(µ→ eγ) found to be inconsistent with the exp. limit by Feinberg in 1958
 - two neutrino models
- Experimental confirmation of $v_{\mu} \neq v_{e}$ in 1962 by Lederman et al.
- "Lepton Flavor" concept

Three Generations of Matter (Fermions) Ш III mass - 2,4 MeV 1.27 GeV 171.2 GeV ⅔ ⅔ ⅓2 ⅓2 spin-1/2 charm photon nameup top 4.8 MeV 104 MeV 4.2 GeV Quarks -1/3 -1/3 -1/3 ⅓2 ⅓2 ⅓2 gluon down strange bottom 91.2 GeV < 2.2 eV < 0.17 MeV <15.5 MeV ⅓ ⅓ Bosons (Forces) weak force electron neutrino muon neutrino tau neutrino 0.511 MeV 105.7 MeV 1.777 GeV 80.4 GeV eptons -1 -1 -1 ⅓ հշ ¥₂ electron muon tau force

from wikipedia

• Muon played an important role to establish the SM of the elementary particle physics. • Muon played an important role to establish the SM of the elementary particle physics. • Muon played an important role to establish the SM of the elementary particle physics.

• Will it be same in the future?

Flavor Physics

SUSY-GUT
Quark mixing
Neutrino mixing

Flavor Physics

• Charged Lepton mixing

Why Muon cLFV?

• Why cLFV?

- no SM background →Suitable for New physics searches
- no ambiguity caused by hadronic interactions
- Why Muon?
 - Muon decays to electron and neutral particle(s) with relatively long life time
 - Easy to produce from pion decay

What can we learn from muon cLFV?

 Slepton mass matrix information (supposing SUSY)

- off-diagonal elements carries information on
 - SUSY breaking
 - LFV interaction at high-energy scale

mu-e conversion search experiment

What is a µ-e Conversion ?

Neutrino-less muon

1s state in a muonic atom

 $\mu + (A,Z) \rightarrow \nu_{\mu} + (A,Z-1)$

• If $\mu \rightarrow e\gamma$ exits, μ -e conv. must be

- If $\mu \rightarrow e\gamma$ exits, μ -e conv. must be
- Even if $\mu \rightarrow e\gamma$ is not observed, μ -e conv may be
 - Loop vs Tree
 - Searches at LHC

• Important to measure both $\mu \rightarrow e\gamma$ and μ -e with similar sensitivity

u-e conversion signal

- E_{μe} ~ m_μ-B_μ
 B_μ: binding energy of the 1s muonic atom
- Improvement of a muon beam is possible, both in purity (no pions) and in intensity (*thanks to muon collider Re3D*). A higher beam intensity can be taken because of no accidentals.
- Potential to discriminate different models through studying the Z dependence

The SINDRUM-II Experiment (at PSI)

Published Results

SINDRUM-II used a continuous muon beam from the PSI cyclotron. To eliminate beam related background from a beam, a beam veto counter was placed. $B(\mu^{-} + Au \rightarrow e^{-} + Au) < 7 \times 10^{-13}$

Future mu-e conversion search experiments

- Mu2e at FNAL
- COMET and DeeMe at J-PARC

Mu2e mu-e conversion search at FNAL

Mu2e e

Detector and Solenoid

• Tracking and Calorimeter

 Decay into muons and transport to stopping target

> S-curve eliminates backgrounds and sign-selects

• Production: Magnetic bottle traps backward-going π that can decay into accepted μ 's

R. Bernstein, FNAL

Pulsed Beam Structure for Mu2e

- Tied to prompt rate and machine: FNAL near-perfect
- Want pulse duration << τ_{μ}^{Al} , pulse separation $\geq \tau_{\mu}^{Al}$
 - FNAL Debuncher has circumference $1.7 \mu sec$!
- Extinction between pulses < 10⁻⁹ needed

• = # protons out of pulse/# protons in pulse

 10⁻⁹ based on simulation of prompt backgrounds

M. Syphers, FNAL

R. Bernstein, FNAL

R. Bernstein, FNAL

Detector

Mu2e e

- T-Tracker (straw tubes with axes *transverse* to muon beam)
- Immersed in solenoidal field, so electrons follow nearhelical path
- Electrons (DIOs!) with p_T < 55 MeV do not pass through detector, but down the center

INFN/Dubna investigating LYSO

 σ /E = 5%, 1024 3.5 × 3.5 × 12 cm PbWO₄

R. Bernstein, FNAL

260 sub-planes

- sixty 5 mm diameter conducting straws
- length from 70-130 cm
- total of 13,000 channels

Calorimeter:

Final Backgrounds

 For R_{µe} = 10⁻¹⁵
 ~40 events / 0.4 bkg (LHC SUSY?)

For R_{µe} = 10⁻¹⁶
 ~4 events / 0.4 bkg

Source	Number
DIO	0.225
Radiative π capture	0.072
μ decay-in-flight	0.072
Scattered e-	0.035
π decay in flight	< 0.0035

- 53%: μ decay in orbit
- 14%: radiative π capture
- 9%: beam electons
- 9%: μ decay in flight (tgt scatter)
- < 7%: µ decay in flight (no tgt scatter)
 3%: cosmic rays
 - 1.4%: anti-protons
- < 1.2%: pattern recognition errors
- 1.2%: radiative µ capture
- < 0.2%: π decay in flight
 - 0.2%: radiative π capture from late π 's

R. Bernstein, FNAL

COMET mu-e conversion search at J-PARC

Overview of the COMET Experiment

Target Sensitivity: 10⁻¹⁶ (90% C.L. Upper Limit)

- Proton Beam
 p→π→μ
- The Muon Source
 - Proton Target
 - Pion Capture
 - Muon Transport

• The Detector

- Muon Stopping Target
- Electron Transport
- Electron Detection

Muon transport through a curved solenoid

- Transport muons in a wide momentum range efficiently
- Momentum selection by a collimator

Signal Sensitivity 2×10⁷ sec running

• Single event sensitivity

$$B(\mu^- + Al \rightarrow e^- + Al) \sim \frac{1}{N_\mu \cdot f_{cap} \cdot A_e},$$

• N_{μ} is a number of stopping muons in the muon stopping target. It is 2.0×10^{18} muons.

 \bullet f_{cap} is a fraction of muon capture, which is 0.6 for aluminum.

• A_e is the detector acceptance, which is 0.031.

total protons	8.5x10 ²⁰
muon yield per proton	0.0035
muon stopping efficiency	0.66
# of stopped muons	2.0x10 ¹⁸

Single event sensitivity $2.6 \ge 10^{-17}$

90% C.L. upper limit 6.0 x 10⁻¹⁷

Background Estimation Summary

Intrinsic backgrounds	originate from muons stopping in the muon stopping target.	 ✓ muon decay in orbit ✓ radiative muon capture ✓ muon capture with particle emission 	7% 7% 15%
Beam-related backgrounds	caused by beam particles, such as electrons, pions, muons, and anti- protons in a beam	 ✓ radiative pion capture ✓ muon decay in flight ✓ pion decay in flight ✓ beam electrons ✓ neutron induced ✓ antiproton induced 	44% 29% Muon Decay in Orbit 0.15 0.34 in total
Other backgrounds	caused by cosmic rays	 ✓ cosmic-ray induced ✓ (pattern recognition error) 	 Radiative Pion Capture 0.05 Neutron Induced 0.024 Anti-proton induced 0.007 Delayed-pion Radiative Capture 0.002
Assun ex	ning proto tinction <	on beam 10 ⁻⁹	 CR Muons 0.002 Electrons from CR Muons 0.002 Radiative Muon Capture <0.001 Muon Cpture with n Emission <0.001 Muon Capture with Charged Part. Emission <0.001 Muon Decay in Flight <0.0002 Pion Decay in Flight <0.0001

19

COMET R&D Status

ure.3.2.1: Test Coil with the outer aluminum ring and G-10 lead insulators, installed the bottom aluminum flange.

- SC wire R&D
 - Al stabilizer
 - neutron irradiation test
 - Magnet design
 - Coil configuration 設計要項表

Т

55

5

4.5

4

3.5

Ē 3

- axial force
- **Detector R&D**
 - tracker
 - calorimeter

35000

?

- 磁気シールドあり

- 空芯

Comparison between Mu2e and COMET

	Mu2e	COMET
Proton Beam	8GeV, 20kW bunch-bunch spacing 1.69 µsec rebunching Extinction: 10 ⁻⁹	8GeV, 50kW bunch-bunch spacing 1.18-1.76 µsec empty buckets Extinction: 10 ⁻⁹
Muon Transport	S-shape Solenoid	U-shape solenoid
Detector	Straight Solenoid with gradient field Tracker and Calorimeter	U-shape U-shape Tracker Network Production Produc
Sensitivity	SES: 2.5×10 ⁻¹⁷ 90% CL UL: 6×10 ⁻¹⁷	SES: 2.6×10 ⁻¹⁷ 90% CL UL: 6×10 ⁻¹⁷

DeeMe another mu-e conversion search at J-PARC

General Idea of µ-e Conversion Setup

- Sensitivity
 - High μ^2 yield
- Background
 - Pulsed Proton
- Detector Rate
 - Momentum Selection before Detector

DeeMe

Another m-e conversion search at J-PARC

Summary

- cLFV search experiment is a powerful tool to investigate new physics beyond the Standard Model
- High intensity muon beam available at highpower proton machines
- $\mu \rightarrow e\gamma$ and mu-e conversion searches
- Mu2e, COMET, DeeME
 - mu-e conversion search at LANL ?