Inclusive Measurements of $B \rightarrow X_c l v$ and $B \rightarrow X_s \gamma$ Decays

Mini-review

Kyle J. Knoepfel On behalf of the *BABAR* Collaboration

October 11, 2010

HQL 2010

Inclusive vs. Exclusive Measurements

- Exclusive *B* decays: $B \rightarrow D^* l v, B \rightarrow K^* \gamma$
 - Experimentally clean signatures
 - Presence of hadronic form factor can preclude definitive statements regarding agreement between theory and experiment
- Inclusive *B* decays: $B \rightarrow X_c l v, B \rightarrow X_s \gamma$
 - Non-perturbative effects are suppressed in the Heavy Quark Expansion (lowest-order contribution: Λ²/m_b²)
 - Precise SM predictions (less than 10% uncertainty)
 - Experimentally very difficult! Inclusive signal → minimal event selection requirements → large backgrounds.

Hadronic Mass, Lepton, and Photon Spectra

- Heavy Quark Expansion breaks down at end points → cannot use HQE to predict spectral shape
- Integrated quantities (moments) of spectra are well-defined in theory and experiment
 - Lepton Momentum and Hadronic Mass Spectra from $B \rightarrow X_c l v$ decays
 - Photon Spectrum from $B \rightarrow X_s \gamma$ decays
- Non-perturbative terms collected into a shape function – similar to parton distribution function
- Same shape function universal to all *B* decays
- Measurements of spectral moments constrain shape function parameters

$B \rightarrow X_c l v$ Decays

- Dominant B decay process ~ 20%
- Discrepancy between branching fractions of inclusive measurements and sum-of-exclusive measurements—not discussed here
- Moments used to extract:
 - CKM matrix element V_{cb}
 - b- and c-quark masses
 - Total $B \rightarrow X_c l v$ branching fraction
 - Heavy Quark Effective Theory (HQET) parameters

$$\mu_{\pi}^2$$

 μ_G^2

Kinetic Exp. Value

Chromomagnetic Exp. Value

Darwin-term Exp. Value

 ho_D^3

 ho_{LS}^3

Spin-orbit coupling Exp. Value

$B \rightarrow X_c l v$ Measurements

• Hadronic X_c mass moments (k = 1 – 6)

$$\begin{split} \langle M_X^k \rangle &= \frac{\sum_i (M_X^k)_i N_i}{\sum_i N_i} \qquad \sigma^2 \left[\langle M_X^k \rangle \right] = \frac{\sum_{i,j} (M_X^k)_i X_{ij} (M_X^k)_j}{\left(\sum_i N_i\right)^2} \\ \langle (M_X^2 - \langle M_X^2 \rangle)^2 \rangle \end{split}$$

- Mixed mass/energy moments (k = 2, 4, 6)
 - Gambino & Uraltsev: Eur. Phys. J. C 34, 181 (2004)

$$n_X^2 = M_X^2 c^4 - 2\tilde{\Lambda} E_X + \tilde{\Lambda}^2$$

- Fitting method to extract SM & QCD parameters:
 - Buchmüller & Flächer: PRD 73, 073008 (2006)
 - B. Aubert et al.: PRL 93, 011803 (2004)

$B \rightarrow X_c l v$ Event Selection

- An Y(4S) event is tagged by hadronic reconstruction of B_{reco}
- High-momentum lepton used to select signal B_{SL}
 - Belle: p_l > 0.7 GeV/c
 - BaBar: p_l > 0.8 GeV/c
- Remaining tracks and neutral deposits used for X_c reconstruction.

- Can improve 4-momentum resolution of X_c system
 - Belle: $p_X' = (p_{e^+} + p_{e^-}) p_{Breco} p_I p_v$
 - BaBar: Kinematic fit with constraint $p_v^2 = 0$.

$B \rightarrow X_c l v$ Backgrounds

- Combinatorial Backgrounds
 - B_{reco} mis-reconstructed with particles from B_{SL}
- Continuum Backgrounds

• e⁺e⁻ → qq̄ (q = u, d, s, c)

- Residual Backgrounds
 - B_{reco} correctly reconstructed, B_{SL} reconstructed with non-signal decays
 - $B \rightarrow X_u l v$ Decays
 - Leptons mis-identified by hadrons
 - Tagged lepton from secondary decay

X_c Mass Spectrum

- Uses $152 \times 10^6 B\overline{B}$ events
- Continuum background subtracted with off-peak data
- Signal and remaining background shapes modeled with MC samples
- Use Singular Value Decomposition (SVD) algorithm to unfold detector resolution effects from mass spectrum.

Systematic Uncertainties

- Branching fraction normalizations
 - Signal modes: $B \rightarrow D^{(*)}lv, B \rightarrow D^{**}lv, B \rightarrow (D^{(*)}\pi)_{nonres}lv$
 - Background components
- Form Factor Shapes
 - HQET-based $B \rightarrow D^{(*)}lv$ model
- SVD Algorithm
 - Effects from unfolding parameter
 - Changes in binning
 - Bin-to-bin efficiency corrections

- Mass moments computed for multiple lepton energy requirements
 - E_{min}* > [0.7, 0.9, ..., 1.9] GeV/c
- All measurements correlated (overlapping events)
- Correlation matrix required for extracting V_{cb} and b- and c-quark masses

Extracting SM/QCD Parameters

• Constraints on V_{cb} , m_b , and μ_{π}^2 obtained by incorporating various spectra into fits, based on phenomenological calculations

BELLE

X_c Mass / Mixed Energy Moments

- Uses 232 × 10⁶ BB events
- Continuum and combinatorial background parameterized with an empirical threshold function
- Residual background and signal modeled with MC samples

Combinatorial/ Continuum Background

Residual Background

Correcting for Detector Resolution

 Parameterized by linear calibration between "true" and "reconstructed" quantities in MC

Systematic Uncertainties

- Limited MC statistics
- Simulation-related effects
 - Selecting charged tracks and photons
 - Particle (mis-)identification
 - Final State Radiation
- Detector calibration/resolution
- Branching fractions of backgrounds
 - $\square B \rightarrow X_u l v \text{ Decays}$
 - Secondary/fake leptons
- Signal Models
 - Effect of varying signal components

Extracting SM/QCD Parameters

 Use experimental inputs—moments from hadronic mass, lepton momentum, and photon energy to constrain heavy quark parameters.

Heavy Flavor Averaging Group (HFAG) Fit

- Measurements from multiple collaborations used to calculate $V_{cb},\,m_b$ and $\mu_{\pi}{}^2$

 Tension between semi-leptonic results and SL+ radiative penguin results—source of much discussion

$B \rightarrow X_s \gamma$ and New Physics

- Flavor-changing neutral currents forbidden at treelevel (SM)
- At least 1st-order ("Penguin") loops necessary
 - □ 4-momentum conservation
 → radiated particle
- NP particles could propagate in loop
- If NP couplings ~ SM couplings, NP observable.

$B \rightarrow X_s \gamma$ Measurements and New Physics

- Branching Fraction Belle, Dec 2009
 - Theoretical precision at 7% level!

 $\mathcal{B}(B \to X_s \gamma) = (3.15 \pm 0.23) \times 10^{-4} \quad E_{\gamma}^B > 1.6 \text{ GeV}$

- Precision measurement required to make strong statement regarding new physics.
- Direct CP-Asymmetry New BABAR Result

$$A_{CP}(B \to X_{s+d}\gamma) = \frac{\Gamma(\overline{B} \to \overline{X}_{s+d}\gamma) - \Gamma(B \to X_{s+d}\gamma)}{\Gamma(\overline{B} \to \overline{X}_{s+d}\gamma) + \Gamma(B \to X_{s+d}\gamma)}$$
$$A_{CP}^{SM}(B \to X_{s+d}\gamma) \sim 10^{-6}$$

Inclusive $B \rightarrow X_s \gamma$ Analysis Strategy (1)

 Apply photon energy cut to suppress continuum and BB backgrounds

Vetoes: Remove photons consistent with π⁰/η decays

Inclusive $B \rightarrow X_s \gamma$ Analysis Strategy (2)

- Lepton tagging: Reduce continuum background by requiring highmomentum lepton from non-signal B
- Discriminant: Further continuum suppression achieved using multivariate discriminant with topological variables

- Remaining background <u>subtracted</u> using:
 - Off-resonance data for continuum background
 - Data-corrected Monte Carlo predictions of BB background

Remaining **B-Backgrounds** after Event Selection

Background	Belle	BABAR Preliminary
Process	$1.7 < E_{\gamma}^* < 2.8 { m GeV}$	$1.8 < E_{\gamma}^* < 2.8 { m GeV}$
$B \to X \pi^0$	0.597	0.613
$B \to X\eta$	0.199	0.192
$B \to X + \text{other}$		
$\omega, \eta', J/\psi, e(\gamma), FSR$	0.111	0.123
Fake γ : e^{\pm}	0.041	0.033
Fake γ : K_L^0 and \overline{n}	0.020	0.025
Other	0.032	0.014

 Data-based MC corrections applied to events from BB background components

Corrected BB Components at Belle

Background	Belle	BABAR Preliminary
Process	$1.7 < E_{\gamma}^* < 2.8 { m GeV}$	$1.8 < E_{\gamma}^* < 2.8 { m GeV}$
$B \to X \pi^0$	0.597	0.613
$B \to X\eta$	0.199	0.192
$B \to X + \text{other}$		
$\omega, \eta', J/\psi, e(\gamma), \mathrm{FSR}$	0.111	0.123
Fake γ : e^{\pm}	0.041	0.033
Fake γ : K_L^0 and \overline{n}	0.020	0.025
Other	0.032	0.014

 $B \rightarrow X_{s+d} \gamma$ Result

- Admixture between lepton-tagged and untagged methods.
- Photon spectrum measured down to 1.7 GeV (97% of spectrum)
- Detector resolution effects unfolded with SVD algorithm

 $\mathcal{B}(B \to X_s \gamma)_{E_{\gamma} > 1.7 \text{ GeV}} = \left(3.45 \pm 0.15_{\text{stat.}} \pm 0.40_{\text{syst.}}\right) \times 10^{-4}$

Corrected BB Components at BABAR

Background	Belle	BABAR Preliminary
Process	$1.7 < E_{\gamma}^* < 2.8 { m GeV}$	$1.8 < E_{\gamma}^* < 2.8 \text{ GeV}$
$B \to X \pi^0$	0.597	0.613
$B \to X\eta$	0.199	0.192
$B \to X + \text{other}$		
$\omega, \eta', J/\psi, e(\gamma), FSR$	0.111	0.123
Fake γ : e^{\pm}	0.041	0.033
Fake γ : K_L^0 and \overline{n}	0.020	0.025
Other	0.032	0.014

 Additional corrections due to MC mismodeling of semi-leptonic decays (lepton tagging)

Correcting π⁰/η Backgrounds

- 80% of backgrounds from $\pi^0/\eta \rightarrow \gamma\gamma$ decays.
- Use specific controls samples to compare data and MC, and apply appropriate correction to MC events.

 MC corrections are very sensitive to modeling of photon detection efficiencies—dominant systematic error.

$B \rightarrow X_{s+d} \gamma$ Photon Spectrum

- To extract A_{CP}, spectrum is separated according to charge of tagged lepton.
 - lepton⁺⁽⁻⁾ tag \rightarrow signal decay from $\overline{B}(B)$ meson

Raw CP-Asymmetry

 $A_{CP}^{\text{meas}}(B \to X_{s+d}\gamma) = 0.045 \pm 0.044_{\text{stat.}}$ BABAR Preliminary

- Raw CP-Asymmetry is not the true quantity. Additional affects dilute measured asymmetry:
 - B⁰ B⁰ oscillations
 - $B \rightarrow D \rightarrow$ lepton (cascade) decays
 - Wrong-sign misidentification

$$A_{CP}(B \to X_{s+d}\gamma) = \frac{1}{1-2\omega} A_{CP}^{\text{meas}}(B \to X_{s+d}\gamma)$$
$$\omega = \frac{\chi_d}{2} + \omega_{\text{cascade}} + \omega_{\text{mis-ID}}$$

- Multiplicative
 Systematics
 - Subdominant errors multiplied by the measured central value

Source	$\omega \pm \Delta \omega$	$\Delta A_{CP}/A_{CP}$
$B^0\overline{B}{}^0$ oscillation	$(0.1824\pm 0.0024)/2$	
Fake lepton ID	0.0073 ± 0.0037	
non-direct-semileptonic	0.0328 ± 0.0035	
$B^0\overline{B}{}^0:B^+B^-=1:1$	± 0.0030	
Total ω	0.131 ± 0.0064	0.018
$B\overline{B}$ yield		0.022
Total mult. uncertainty		0.029

- Additive Systematics
 - Accounts for potential biases

Source	Correction (10^{-2})
$B\overline{B}$ background	-0.4 ± 0.6
Detection asymmetry	0.0 ± 1.1
Total	-0.4 ± 1.3

$$A_{CP} = \frac{(0.045 \pm 0.044(stat.)) - (0.004 \pm 0.013)}{0.738(1 \pm 0.029)}$$

= 0.056 \pm 0.060(stat.) \pm 0.018(syst.)
BABAR
Preliminary

HQL 2010

Summary

- Inclusive $B \rightarrow X_c l v$ and $B \rightarrow X_s \gamma$ decays are probes of the Standard Model:
 - Fundamental SM parameters: V_{cb}, m_b, m_c
 - **QCD** parameters: μ_{π}^2 , μ_G^2 , ρ_D^3 , ρ_{LS}^3
 - Extracted by using a fit with lepton momentum, hadronic mass, and photon energy spectra
- $B \rightarrow X_s \gamma$ decays are sensitive to new physics through new physics particles propagating in penguin diagram
 - Branching fraction result from Belle consistent with SM
 - New preliminary A_{CP} result from BABAR consistent with SM

