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mc ∼1.5GeV
 mb ∼5GeV
mt ∼170GeV

Heavy quarks offer a privileged access 
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The rich structure of separated energy scales makes QQbar  an ideal probe

Quarkonium as a confinement and deconfinement probe

It is precisely the rich structure of separated energy scales that makes quarkonium an
ideal probe of confinement and deconfinement.

• The different quarkonium radii provide different measures of the transition from a
Coulombic to a confined bound state.
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More is expected in the future

BESIII, LHC-b 

qqbar production  at CMS and Atlas
Alice
Panda
Super B, ILC
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EFTs for Quarkonium

established in a series

of papers: Pineda, Soto 97, N. Brambilla , Pineda, Soto, 

Vairo, 99, N. Brambilla et al. 00-09

N.B, Pineda, Soto, Vairo Review of Modern Physics 04
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                      Bodwin, Braaten, Lepage 95......
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a coherent picture in NRQCD for quarkonium production at 
Tevatron, Rhic, Hera is emerging -> to be scrutinized at 

LHC!



Inclusive decays 

NRQCD factorization

• Production: see the talk by P. Artoisenet.
• Annihilation: the NRQCD factorization formula reads

Γ(H → l.h.) =
X

n

2 Im f (n)

MdOn
−4

〈H|O4−fermion
n |H〉

Progress has been made in
• the evaluation of the factorization formula at order v7;

◦ Brambilla Mereghetti Vairo JHEP 0608(06)039
PRD 79(09)074002

• the (lattice) evaluation of the matrix elements.
◦ Bodwin Lee Sinclair PRD 72(05)014009
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• Annihilation: the NRQCD factorization formula reads

Γ(H → l.h.) =
X

n

2 Im f (n)

MdOn
−4

〈H|O4−fermion
n |H〉

Progress has been made in
• the evaluation of the factorization formula at order v7;

◦ Brambilla Mereghetti Vairo JHEP 0608(06)039
PRD 79(09)074002

• the (lattice) evaluation of the matrix elements.
◦ Bodwin Lee Sinclair PRD 72(05)014009

Charmonium P-wave decays

• ... and in the experimental data. E.g.

Ratio PDG09 PDG00 LO NLO
Γ(χc0 → γγ)

Γ(χc2 → γγ)
4.9±0.8 13±10 3.75 ≈ 5.43

Γ(χc2 → l.h.) − Γ(χc1 → l.h.)

Γ(χc0 → γγ)
440±100 270±200 ≈ 347 ≈ 383

Γ(χc0 → l.h.) − Γ(χc1 → l.h.)

Γ(χc0 → γγ)
4000±600 3500±2500 ≈ 1300 ≈ 2781

Γ(χc0 → l.h.) − Γ(χc2 → l.h.)

Γ(χc2 → l.h.) − Γ(χc1 → l.h.)
8.0±0.9 12.1±3.2 2.75 ≈ 6.63

Γ(χc0 → l.h.) − Γ(χc1 → l.h.)

Γ(χc2 → l.h.) − Γ(χc1 → l.h.)
9.0±1.1 13.1±3.3 3.75 ≈ 7.63

mc = 1.5 GeV αs(2mc) = 0.245
in NLO, v7 terms are not included

The table clearly shows that the data are sensitive to NLO corrections in the Wilson
coefficients f (n) (and perhaps also to relativistic corrections).

PDG010



αs from Υ(1S) decay

• New CLEO data on Υ(1S) → γ X,
• new lattice determinations of NRQCD matrix elements,

have led to an improved NLO analysis of Γ(Υ(1S) → γ X)/Γ(Υ(1S) → X)

and to an improved determination of αs at the Υ-mass scale:

αs(MΥ(1S)) = 0.184+0.015
−0.014, αs(MZ) = 0.119+0.006

−0.005

◦ Brambilla Garcia Soto Vairo PRD 75(07)074014

0

0.1

0.2

0.3

1 10 102

µ GeV

!
s(µ

) ◦ PDG 2006

QCD !  ("  ) = 0.1184 ± 0.0007s Z

0.1

0.2

0.3

0.4

0.5

!!s (Q)

1 10 100Q [GeV]

Heavy Quarkonia
e+e–  Annihilation
Deep Inelastic Scattering

July 2009

◦ Bethke 2009



Physics at the scale mv and mv^2 : pNRQCD 



pNRQCD is today the theory used to address 
quarkonium bound states properties

high order perturbative calculations   
Resonances 

•Spectra

•Decays
Inclusive& seminclusive decays   
M1and E1 transitions  
Electromagnetic widths, Lines Shapes 

• Doubly charmed baryons and QQQ

• Standard model parameters extraction
c and b masses, alpha_s   

• Gluelumps and Hybrids

• Threshold ttbar cross section (for the ILC) 

•Nonperturbative potentials for the lattice 

• General features of the NR EFTs 

Physics at the scale mv and mv^2 : pNRQCD 



pNRQCD and quarkonium Several cases for the physics at hand

The EFT  has been constructed 

Several cases for the physics at hand

*Work at calculating higher order perturbative corrections

in v and alpha_s

*Resumming the log

*Calculating/extracting  nonperturbatively the low energy  

quantities  

*Extending the theory (electromagnetic effect, 3 bodies)

The EFT  has not yet been  constructed 

*Degrees of freedom still to be identified

The EFT  is being   constructed 

*Results in the static limit that hints at a new physical picture

(Exotics close to threshold) 

(Finite T ) 
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The EFT is being constructed  (Finite T)

*Results on the static potential hint at a new physical picture of dissociation

*Mass and width of quarkonium  at m alpha^5(Y(1S) bbar at LHC)

*Polyakov loop calculation

Laine et al, 2007, Escobedo, Soto 
2007 N. B. et al. 2008

N. B. et al. 2010

N. B. et al. 2010
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Weakly coupled pNRQCD r � Λ−1
QCD

Case 1: pNRQCD formv ! ΛQCD
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Quarkonium singlet static potential at N^4LO

The static potential at N4LO
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Two problems:
1)Bad convergence of the series due to large beta_0 terms

2) Large logs
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Two problems:
1)Bad convergence of the series due to large beta_0 terms

2) Large logs

for long it was believed  that such series was not convergent

problem for any phenomenological application
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Two problems:
1)Bad convergence of the series due to large beta_0 terms

2) Large logs

The eft  cures both:
1) Renormalon subtracted scheme 

2) Renormalization group summation of the logs

up to N^3LL (α4+n
s lnn αs) N. Brambilla. et al 2007, 2009

Beneke 98, Hoang, Lee 99, Pineda 01, 
n.brambilla et al 09

for long it was believed  that such series was not convergent

problem for any phenomenological application
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In [24], also the three-loop leading logarithmic contribution in the infrared cut off has been

calculated. Since that calculation does not account for the octet mixing, its result applies for

geometries where the mixing cancels, like the isosceles one. It would be interesting to extend

that calculation to generic geometries and combine the result with the complete NNLO result

given above.

Other possible future developments include comparisons with lattice results. They exist

both for the ground state (the colour-singlet state) and for the possibly first gluonic excitation

of the QQQ system [27, 28]. An accurate comparison in the short range will show the running

of the three-body potential and determine at which distances a perturbative description of

the three-body potential breaks down. It may also serve to establish the nature of the

gluonic excitation seen in the lattice data, determine if it is indeed the first excitation and
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FIG. 8: The only three-body diagrams that are not exponentiations and that have a non-vanishing

amplitude in Coulomb gauge. Dashed lines are longitudinal gluons, curly lines are transverse

ones. We adopt the following conventions: momenta in vertex 1 are all ingoing, while in index

2 the momenta of the transverse gluon is outgoing, the others are ingoing. We call q1, q2, q3 the

differences between final and initial four-momenta of the three static quarks.

and Hb
q1

(q) the momentum-space amplitude of the diagram in Fig. 8 a and b respectively,

due to their H-shaped appearance, where q = (q1,q2,q3) and the q1 pedix labels the source

that couples to two gluons.

As we shall show later on there is a simplification when one considers the sumHqi(q), defined

as

Hqi(q) = H
a
qi

(q) +H
b
qi

(q) ∀i. (49)

The full amplitude, i.e. the sum of all twelve diagrams, is thus

Htot(q) = 2

3�

i=1

Hqi(q). (50)

Hq2 and Hq3 can be easily obtained from Hq1 by a permutation of the momenta. We thus

concentrate on computing Hq1 .

Here we analyze only the color structure for the singlet representation (24), for a SU(NC)

baryon, and for the decuplet SU(3) representation. We start with the singlet: due to its

25
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entirely determined by the quark anomalous mag-
netic moment. Since the quark magnetic moment
appears at the scale m, it is accessible by pertur-
bation theory: κQ = 2αs(m)/(3π) + O(αs

2). As a
consequence, κQ is a small positive quantity, about
0.05 in the bottomonium case and about 0.08 in the
charmonium one. This is confirmed by lattice cal-
culations [423] and by the analysis of higher-order
multipole amplitudes (see Sect. 3.1.6).

• QCD does not allow for a scalar-type contribution
to the magnetic transition rate. A scalar interac-
tion is often postulated in phenomenological mod-
els.

The above conclusions were shown to be valid at any
order of perturbation theory as well as nonperturbatively.
They apply to magnetic transitions from any quarkonium
state. For ground state magnetic transitions, we expect
that perturbation theory may be used at the scale mv.
Under this assumption, the following results were found
at relative order v2.

• The magnetic transition rate between the vector
and pseudoscalar quarkonium ground state, includ-
ing the leading relativistic correction (parametrized
by αs at the typical momentum-transfer scale
miαs/2) and the leading anomalous magnetic mo-
ment (parametrized by αs at the mass scale mi/2),
reads

Γ(i → γ + f) =
16

3
α e2

Q

E3
γ

m2
i

×
[

1 +
4

3

αs(mi/2)

π
−

32

27
αs

2(miαs/2)

]
, (97)

in which i = 1301 and f = 1101. This expression
is not affected by nonperturbative contributions.
Applied to the charmonium and bottomonium case
it gives: B(J/ψ → γηc(1S)) = (1.6 ± 1.1)%
(see Sect. 3.1.2 for the experimental situation) and
B(Υ(1S) → γηb(1S)) = (2.85 ± 0.30) × 10−4 (see
Sect. 3.1.8 for some experimental perspectives).

• A similar perturbative analysis, performed for hin-
dered magnetic transitions, mischaracterizes the
experimental data by an order of magnitude, point-
ing either to a breakdown of the perturbative ap-
proach for quarkonium states with principal quan-
tum number n > 1, or to large higher-order rela-
tivistic corrections.

The above approach is well suited to studying the line-
shapes of the ηc(1S) and ηb(1S) in the photon spectra of
J/ψ → γηc(1S) and Υ(1S) → γηb(1S), respectively. In
the region of Eγ $ mαs, at leading order, the lineshape

is given by [424]

dΓ

dEγ
(i → γ + f) =

16

3

α e2
Q

π

E3
γ

m2
i

×

Γf/2

(mi − mf − Eγ)2 + Γ2
f/4

, (98)

which has the characteristic asymmetric behavior around
the peak seen in the data (compare with the discussion
in Sect. 3.1.2).

No systematic analysis is yet available for relativis-
tic corrections to electromagnetic transitions involving
higher quarkonium states, i.e., states for which ΛQCD

is larger than the typical binding energy of the quarko-
nium. These states are not described in terms of a
Coulombic potential. Transitions of this kind include
magnetic transitions between states with n > 1 and all
electric transitions, n = 2 bottomonium states being on
the boundary. Theoretical determinations rely on phe-
nomenological models, which we know do not agree with
QCD in the perturbative regime and miss some of the
terms at relative order v2 [407]. A systematic analysis
is, in principle, possible in the same EFT framework de-
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the vast majority of transitions observed in nature.

Higher-order multipole transitions have been observed
in experiments (see Sect. 3.1.6), Again, a systematic
treatment is possible in the EFT framework outlined
above, but has not yet been realized.

3.1.2. Study of ψ(1S, 2S) → γηc(1S)

Radiative transitions in the charmonium system have
recently been explored using both lattice QCD [423] and
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• QCD does not allow for a scalar-type contribution
to the magnetic transition rate. A scalar interac-
tion is often postulated in phenomenological mod-
els.

The above conclusions were shown to be valid at any
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Under this assumption, the following results were found
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reads

Γ(i → γ + f) =
16

3
α e2

Q

E3
γ

m2
i

×
[

1 +
4

3

αs(mi/2)

π
−

32

27
αs

2(miαs/2)

]
, (97)

in which i = 1301 and f = 1101. This expression
is not affected by nonperturbative contributions.
Applied to the charmonium and bottomonium case
it gives: B(J/ψ → γηc(1S)) = (1.6 ± 1.1)%
(see Sect. 3.1.2 for the experimental situation) and
B(Υ(1S) → γηb(1S)) = (2.85 ± 0.30) × 10−4 (see
Sect. 3.1.8 for some experimental perspectives).

• A similar perturbative analysis, performed for hin-
dered magnetic transitions, mischaracterizes the
experimental data by an order of magnitude, point-
ing either to a breakdown of the perturbative ap-
proach for quarkonium states with principal quan-
tum number n > 1, or to large higher-order rela-
tivistic corrections.

The above approach is well suited to studying the line-
shapes of the ηc(1S) and ηb(1S) in the photon spectra of
J/ψ → γηc(1S) and Υ(1S) → γηb(1S), respectively. In
the region of Eγ $ mαs, at leading order, the lineshape

is given by [424]

dΓ

dEγ
(i → γ + f) =

16

3

α e2
Q

π

E3
γ

m2
i

×

Γf/2

(mi − mf − Eγ)2 + Γ2
f/4

, (98)

which has the characteristic asymmetric behavior around
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• QCD does not allow for a scalar-type contribution
to the magnetic transition rate. A scalar interac-
tion is often postulated in phenomenological mod-
els.

The above conclusions were shown to be valid at any
order of perturbation theory as well as nonperturbatively.
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that perturbation theory may be used at the scale mv.
Under this assumption, the following results were found
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dered magnetic transitions, mischaracterizes the
experimental data by an order of magnitude, point-
ing either to a breakdown of the perturbative ap-
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tum number n > 1, or to large higher-order rela-
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the peak seen in the data (compare with the discussion
in Sect. 3.1.2).

No systematic analysis is yet available for relativis-
tic corrections to electromagnetic transitions involving
higher quarkonium states, i.e., states for which ΛQCD

is larger than the typical binding energy of the quarko-
nium. These states are not described in terms of a
Coulombic potential. Transitions of this kind include
magnetic transitions between states with n > 1 and all
electric transitions, n = 2 bottomonium states being on
the boundary. Theoretical determinations rely on phe-
nomenological models, which we know do not agree with
QCD in the perturbative regime and miss some of the
terms at relative order v2 [407]. A systematic analysis
is, in principle, possible in the same EFT framework de-
veloped for magnetic transitions. Relativistic corrections
would turn out to be factorized in some high-energy coef-
ficients, which may be calculated in perturbation theory,
and in Wilson-loop amplitudes similar to those that en-
code the relativistic corrections of the heavy quarkonium
potential [174]. At large spatial distances, Wilson-loop
amplitudes cannot be calculated in perturbation theory
but are well-suited for lattice measurements. Realizing
the program of systematically factorizing relativistic cor-
rections in Wilson-loop amplitudes and evaluating them
on the lattice, would, for the first time, produce model-
independent determinations of quarkonium electromag-
netic transitions between states with n > 1. These are
the vast majority of transitions observed in nature.

Higher-order multipole transitions have been observed
in experiments (see Sect. 3.1.6), Again, a systematic
treatment is possible in the EFT framework outlined
above, but has not yet been realized.

3.1.2. Study of ψ(1S, 2S) → γηc(1S)

Radiative transitions in the charmonium system have
recently been explored using both lattice QCD [423] and
effective field theory techniques [407]. Key among these
are the magnetic dipole (M1) transitions J/ψ → γηc(1S)
and ψ(2S) → γηc(1S). Using a combination of inclusive
and exclusive techniques, CLEO [69] has recently mea-
sured

B(J/ψ → γηc(1S)) = (1.98 ± 0.09 ± 0.30)%
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code the relativistic corrections of the heavy quarkonium
potential [174]. At large spatial distances, Wilson-loop
amplitudes cannot be calculated in perturbation theory
but are well-suited for lattice measurements. Realizing
the program of systematically factorizing relativistic cor-
rections in Wilson-loop amplitudes and evaluating them
on the lattice, would, for the first time, produce model-
independent determinations of quarkonium electromag-
netic transitions between states with n > 1. These are
the vast majority of transitions observed in nature.

Higher-order multipole transitions have been observed
in experiments (see Sect. 3.1.6), Again, a systematic
treatment is possible in the EFT framework outlined
above, but has not yet been realized.

3.1.2. Study of ψ(1S, 2S) → γηc(1S)

Radiative transitions in the charmonium system have
recently been explored using both lattice QCD [423] and
effective field theory techniques [407]. Key among these
are the magnetic dipole (M1) transitions J/ψ → γηc(1S)
and ψ(2S) → γηc(1S). Using a combination of inclusive
and exclusive techniques, CLEO [69] has recently mea-
sured

B(J/ψ → γηc(1S)) = (1.98 ± 0.09 ± 0.30)%
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reducing the discrepancy between experiment and pre-
dictions from the nonrelativistic quark model [31]. The
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TABLE 23: Comparison of measured χcJ decay-width ra-
tios (using PDG08 [18] and its online update for 2009) with
LO and NLO determinations, assuming mc = 1.5 GeV and
αs(2mc) = 0.245, but without corrections of relative order v2.
LH ≡ light hadrons

Ratio PDG LO NLO

Γ(χc0 → γγ)
Γ(χc2 → γγ)

4.9 3.75 5.43

Γ(χc2 → LH) − Γ(χc1 → LH)
Γ(χc0 → γγ)

440 347 383

Γ(χc0 → LH) − Γ(χc1 → LH)
Γ(χc0 → γγ)

4000 1300 2781

Γ(χc0 → LH) − Γ(χc2 → LH)
Γ(χc2 → LH) − Γ(χc1 → LH)

8.0 2.75 6.63

Γ(χc0 → LH) − Γ(χc1 → LH)
Γ(χc2 → LH) − Γ(χc1 → LH)

9.0 3.75 7.63

matrix elements is to go to the lower-energy EFT, pN-
RQCD, and to exploit the hierarchy mv ! mv2. In
pNRQCD, NRQCD matrix elements factorize into two
parts: one, the quarkonium wave-function or its deriva-
tive at the origin, and the second, gluon-field correlators
that are universal, i.e., independent of the quarkonium
state. The pNRQCD factorization has been exploited for
P-wave and S-wave decays in [176].

Quarkonium ground states have typical binding en-
ergy larger than or of the same order as ΛQCD. Matrix
elements of these states may be evaluated in perturba-
tion theory with the nonperturbative contributions being
small corrections encoded in local or nonlocal conden-
sates. Many higher-order corrections to spectra, masses,
and wave functions have been calculated in this man-
ner [152], all of them relevant to the quarkonium ground
state annihilation into light hadrons and its electromag-
netic decays. For some recent reviews about applica-
tions, see [445, 446]. In particular, Υ(1S), ηb(1S), J/ψ,
and ηc(1S) electromagnetic decay widths at NNLL have
been evaluated [248, 447]. The ratios of electromagnetic
decay widths were calculated for the ground state of char-
monium and bottomonium at NNLL order [447], finding,
e.g.,

Γ(ηb(1S) → γγ)

Γ(Υ(1S) → e+e−)
= 0.502± 0.068 ± 0.014 . (107)

A partial NNLL-order analysis of the absolute widths of
Υ(1S) → e+e− and ηb(1S) → γγ can be found in [248].

As the analysis of Γ(Υ(1S) → e+e−) of [248] illus-
trates, for this fundamental quantity there may be prob-
lems of convergence of the perturbative series. Prob-
lems of convergence are common and severe for all the
annihilation observables of ground state quarkonia and

may be traced back to large logarithmic contributions, to
be resummed by solving suitable renormalization group
equations, and to large β0αs contributions of either re-
summable or nonresummable nature (these last ones are
known as renormalons). Some large β0αs contributions
were successfully treated [448] to provide a more reliable
estimate for

Γ(ηc(1S) → LH)

Γ(ηc(1S) → γγ)
= (3.26 ± 0.6) × 103 , (108)

or (3.01 ± 0.5)× 103 in a different resummation scheme.
A similar analysis could be performed for the ηb(1S),
which combined with a determination of Γ(ηb(1S) → γγ)
would then provide a theoretical determination of the
ηb(1S) width. At the moment, without any resummation
or renormalon subtraction performed,

Γ(ηb(1S) → LH)

Γ(ηb(1S) → γγ)
$ (1.8–2.3) × 104 . (109)

Recently a new resummation scheme has been suggested
for electromagnetic decay ratios of heavy quarkonium
and applied to determine the ηb(1S) decay width into
two photons [449]:

Γ(ηb(1S) → γγ) = 0.54 ± 0.15 keV . (110)

Substituting Eq. (110) into Eq. (109) gives Γ(ηb(1S) →
LH) = 7-16 MeV.

3.2.2. Measurement of ψ, Υ → γgg

In measurements of the γgg rate from J/ψ [223],
ψ(2S) [224], and Υ(1S, 2S, 3S) [218], CLEO finds that
the most effective experimental strategy to search for
γgg events is to focus solely upon those with energetic
photons (which are less prone to many backgrounds),
then to make the inevitable large subtractions of ggg,
qq̄, and transition backgrounds on a statistical basis,
and finally to extrapolate the radiative photon energy
spectrum to zero with the guidance of both theory and
the measured high energy spectrum. The most trouble-
some background remaining is from events with energetic
π0 → γγ decays which result in a high-energy photon in
the final state. One of several methods used to estimate
this background uses the measured charged pion spectra
and the assumption of isospin invariance to simulate the
resulting photon spectrum with Monte Carlo techniques;
another measures the exponential shape of the photon-
from-π0 distribution at low photon energy, where γgg de-
cays are few, and extrapolates to the full energy range.
Backgrounds to γgg from transitions require the input of
the relevant branching fractions and their uncertainties.
The rate for ggg decays is then estimated as that fraction
of decays that remains after all dileptonic, transition, and
qq̄ branching fractions are subtracted, again requiring in-
put of many external measurements and their respective
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The rate for ggg decays is then estimated as that fraction
of decays that remains after all dileptonic, transition, and
qq̄ branching fractions are subtracted, again requiring in-
put of many external measurements and their respective
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TABLE 23: Comparison of measured χcJ decay-width ra-
tios (using PDG08 [18] and its online update for 2009) with
LO and NLO determinations, assuming mc = 1.5 GeV and
αs(2mc) = 0.245, but without corrections of relative order v2.
LH ≡ light hadrons

Ratio PDG LO NLO

Γ(χc0 → γγ)
Γ(χc2 → γγ)

4.9 3.75 5.43

Γ(χc2 → LH) − Γ(χc1 → LH)
Γ(χc0 → γγ)

440 347 383

Γ(χc0 → LH) − Γ(χc1 → LH)
Γ(χc0 → γγ)

4000 1300 2781

Γ(χc0 → LH) − Γ(χc2 → LH)
Γ(χc2 → LH) − Γ(χc1 → LH)

8.0 2.75 6.63

Γ(χc0 → LH) − Γ(χc1 → LH)
Γ(χc2 → LH) − Γ(χc1 → LH)

9.0 3.75 7.63

matrix elements is to go to the lower-energy EFT, pN-
RQCD, and to exploit the hierarchy mv ! mv2. In
pNRQCD, NRQCD matrix elements factorize into two
parts: one, the quarkonium wave-function or its deriva-
tive at the origin, and the second, gluon-field correlators
that are universal, i.e., independent of the quarkonium
state. The pNRQCD factorization has been exploited for
P-wave and S-wave decays in [176].

Quarkonium ground states have typical binding en-
ergy larger than or of the same order as ΛQCD. Matrix
elements of these states may be evaluated in perturba-
tion theory with the nonperturbative contributions being
small corrections encoded in local or nonlocal conden-
sates. Many higher-order corrections to spectra, masses,
and wave functions have been calculated in this man-
ner [152], all of them relevant to the quarkonium ground
state annihilation into light hadrons and its electromag-
netic decays. For some recent reviews about applica-
tions, see [445, 446]. In particular, Υ(1S), ηb(1S), J/ψ,
and ηc(1S) electromagnetic decay widths at NNLL have
been evaluated [248, 447]. The ratios of electromagnetic
decay widths were calculated for the ground state of char-
monium and bottomonium at NNLL order [447], finding,
e.g.,

Γ(ηb(1S) → γγ)

Γ(Υ(1S) → e+e−)
= 0.502± 0.068 ± 0.014 . (107)

A partial NNLL-order analysis of the absolute widths of
Υ(1S) → e+e− and ηb(1S) → γγ can be found in [248].

As the analysis of Γ(Υ(1S) → e+e−) of [248] illus-
trates, for this fundamental quantity there may be prob-
lems of convergence of the perturbative series. Prob-
lems of convergence are common and severe for all the
annihilation observables of ground state quarkonia and

may be traced back to large logarithmic contributions, to
be resummed by solving suitable renormalization group
equations, and to large β0αs contributions of either re-
summable or nonresummable nature (these last ones are
known as renormalons). Some large β0αs contributions
were successfully treated [448] to provide a more reliable
estimate for

Γ(ηc(1S) → LH)

Γ(ηc(1S) → γγ)
= (3.26 ± 0.6) × 103 , (108)

or (3.01 ± 0.5)× 103 in a different resummation scheme.
A similar analysis could be performed for the ηb(1S),
which combined with a determination of Γ(ηb(1S) → γγ)
would then provide a theoretical determination of the
ηb(1S) width. At the moment, without any resummation
or renormalon subtraction performed,

Γ(ηb(1S) → LH)

Γ(ηb(1S) → γγ)
$ (1.8–2.3) × 104 . (109)

Recently a new resummation scheme has been suggested
for electromagnetic decay ratios of heavy quarkonium
and applied to determine the ηb(1S) decay width into
two photons [449]:

Γ(ηb(1S) → γγ) = 0.54 ± 0.15 keV . (110)

Substituting Eq. (110) into Eq. (109) gives Γ(ηb(1S) →
LH) = 7-16 MeV.

3.2.2. Measurement of ψ, Υ → γgg

In measurements of the γgg rate from J/ψ [223],
ψ(2S) [224], and Υ(1S, 2S, 3S) [218], CLEO finds that
the most effective experimental strategy to search for
γgg events is to focus solely upon those with energetic
photons (which are less prone to many backgrounds),
then to make the inevitable large subtractions of ggg,
qq̄, and transition backgrounds on a statistical basis,
and finally to extrapolate the radiative photon energy
spectrum to zero with the guidance of both theory and
the measured high energy spectrum. The most trouble-
some background remaining is from events with energetic
π0 → γγ decays which result in a high-energy photon in
the final state. One of several methods used to estimate
this background uses the measured charged pion spectra
and the assumption of isospin invariance to simulate the
resulting photon spectrum with Monte Carlo techniques;
another measures the exponential shape of the photon-
from-π0 distribution at low photon energy, where γgg de-
cays are few, and extrapolates to the full energy range.
Backgrounds to γgg from transitions require the input of
the relevant branching fractions and their uncertainties.
The rate for ggg decays is then estimated as that fraction
of decays that remains after all dileptonic, transition, and
qq̄ branching fractions are subtracted, again requiring in-
put of many external measurements and their respective
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High-lying quarkonia away from threshold: 1/m potentials

• mv ∼ ΛQCD

•integrate out all scales above mv
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ΛQCD • gluonic excitations develop a gap               

and  are integrated out

Brambilla Pineda Soto Vairo 00

• A pure potential description emerges from the EFT

Calculate once for ever the potential and get 
the full charmonium specroscopy





High-lying quarkonia away from threshold: 1/m potentials

• Singlet states described by the long tails of the potentials in pNRQCD:

V = V0 +
1

m
V1 +

1

m2
(VSD + VV D)

•Lattice calculations of the pNRQCD  potentials

•Exact relations among the potentials from the EFT

•QCD vacuum calculation of the potential (need only one assumption on the Wilson loop 
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 Spin dependent potentials  



 Spin dependent potentials  

Such data can distinguish different models for the dynamics 
of low energy QCD



Confirmed in the spectrum, e.g. no long range spin-spin interaction
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experiments: Xs, Ys, Zs

No systematic treatment is available; lattice 
calculations are inadequate 

In some cases it is possible to develop an EFT 
owing to special dynamical condition

Braaten Hammer 06 
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Conclusions
OutlookII

Nonrelativistic Effective  Field Theories provide a systematic tool 

to investigate a wide range of heavy quarkonium observables         

in the realm of  QCD

Effective field  theories gives us invaluable tools to investigate strong interactions

Allow us to make calculations with unprecented precision, 
where high order perturbative calculations are possible

and to systematically factorize short from long range 
contributions where observables are sentitive to the 

nonperturbative dynamics of QCD

 They allow us to give the appropriate definition and define a 
calculational scheme for quantities of huge 

phenomenological interest like the  qqbar interaction, 
spectra, decays ... and 

the qqbar potential at finite T

in the  EFT  framework heavy quark bound states become a unique 
laboratory for the study of strong interaction from  the high energy 

to the low energy scales
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