

Charmonium and Heavy Flavour at LHCb

C. Fitzpatrick (University of Edinburgh) on behalf of the LHCb collaboration

Heavy Quarks & Leptons X INFN Frascati

cē & HF @ LHCb

Introduction The LHCb Performance $c\bar{c} \& HF @ LHCb$ Ouarkonia $J/\psi (1S)$ χ_c $\psi (2S)$ Υ b Production B from $J/\psi (1S) X$ B from $D^0 X \mu^- \nu_\mu$ B from $D^* \mu^- \nu_\mu X$ Open charm

Conclusions

C. Fitzpatrick

Outline

Introduction

The LHCb Performance cc̄ & HF @ LHCb

Quarkonia

 $J/\psi(1S)$ χ_c $\psi(2S)$ Υ

b Production

 $\begin{array}{l} \text{B from J/}\psi(1\text{S}) \text{ X} \\ \text{B from D}^{0}\text{X}\mu^{-}\nu_{\!\mu} \\ \text{B from D}^{*} \ \mu^{-} \ \nu_{\!\mu} \text{ X} \end{array}$

Open charm

Conclusions

cc & HF @ LHCb The LHCb Performance cc & HF @ LHCb Quarkonia $J/\psi(1S)$ χ_{c} $\psi(2S)$ Υ **b** Production B from $J/\psi(1S) X$ B from $D^0 X \mu^- \nu_{\mu}$ B from D^{*} $\mu^- \nu_{\mu} X$ Open charm Conclusions

C. Fitzpatrick

The LHCb Experiment

- LHCb is a precision b,c-physics experiment
- We aim to measure CP violation in a number of modes requiring:
 - Precise vertexing (VELO)
 - Particle ID (RICH)
- LHCb is fully instrumented on $15 < \Theta < 300 \text{ mrad}$
 - high sensitivity in a unique region of phase space

 Single-arm spectrometer to take advantage of correlated forward b, b-quark production at LHC

cc & HF @ LHCb Introduction The LHCb Performance cc & HF @ LHCb Quarkonia $J/\psi(1S)$ χ_{c} $\psi(2S)$ Υ **b** Production B from $J/\psi(1S) X$ B from $D^0 X \mu^- \nu_{\mu}$ B from $D^* \mu^- \nu_{\mu} X$ Open charm Conclusions

> C. Fitzpatrick October 11, 2010

LHCb Performance

- LHCb is operating with high efficiency: 90% of collisions supplied are recorded, with 13.3 pb⁻¹on disk
 - VELO moves from 58 mm to within 8 mm of the beam at start of collisions
 - procedure takes only ~ 3 minutes, limited by mechanical operation

- All subdetectors performing within expectation (>>> 98% channel efficiency)
- A real pleasure to operate! Only requires two shifters to run (Shift leader + Data Manager)

cc & HF @ LHCb

```
Introduction

The LHCb

Performance

c\bar{c} \& HF (@ LHCb

Quarkonia

J/\psi(1S)

\chi_c

\psi(2S)

\Upsilon

b Production

B from J/\psi(1S) X

B from D^0 X \mu^- \nu_\mu

B from D^0 X \mu^- \nu_\mu

X Open charm

Conclusions
```

C. Fitzpatrick October 11, 2010

cc̄ and Heavy Flavor at LHCb

cē & HF @ LHCb

Introduction

The LHCb

Performance

- b and c are the essence of the LHCb physics program (See talks by R. Lambert, N. Tuning, J. Blouw)
- with early data we can explore b and c production which are themselves interesting as:
 - Test of NRQCD predictions for prompt onia production
 - Confirmation and measurement of higher charmonia states
 - Measurement of fragmentation fractions for comparison to LEP and Tevatron results
 - Future LHCb analyses will rely on knowing σ(pp → bbX)
 - Tuning of generators at this energy regime
- LHCb is in a unique position to measure b and c hadron production at large rapidities
- This talk will present the measurements to date and future plans

Cuarkonia $J/\psi(1S)$ χ_c $\psi(2S)$ Υ **b** Production B from $J/\psi(1S)$ X B from $D^0 X \mu^- \nu_\mu$ B from $D^* \mu^- \nu_\mu$ X Open charm Conclusions

C. Fitzpatrick

 $J/\psi(1S)$

cc & HF @ LHCb Introduction The LHCb Performance cc & HF @ LHCb Quarkonia $J/\psi(1S)$ χ_{c} $\psi(2S)$ Υ b Production B from $J/\psi(1S) X$ B from $D^0 X \mu^- \nu_{\mu}$ B from $D^* \mu^- \nu_{\mu} X$ Open charm Conclusions

 J/ψ(1S) cross-section measurements are of particular interest at LHC, with all 4 experiments presenting results

- J/ψ(1S) cross-sections measured at the Tevatron did not agree well with color singlet
- LHC presents a new opportunity to compare to Tevatron results and the octet model
- Sources of J/ψ(1S) at LHC:
 - Direct pp production
 - Feed-down from heavier charmonia $(\chi_c \rightarrow J/\psi(1S)\gamma, \psi(2S) \rightarrow J/\psi(1S)\pi\pi)$
 - From b hadrons (B \rightarrow J/ ψ (1S)X)
- At ICHEP the inclusive cross-section was presented in bins of p_T with 14 nb⁻¹

C. Fitzpatrick

- There is an efficiency dependence on the polarisation, to which we presently assign a conservative systematic error
- This will be measured with a larger dataset
- $\sigma(\text{pp} \to \text{J}/\psi(1\text{S})\text{X}) = \left(7.65 \pm 0.19 \pm 1.10^{+0.87}_{-1.27}\right) \mu\text{b}$ $(p_{\text{T}} < 10 \text{ GeV}/c, 2.5 < y < 4)$
- J/ψ(1S) measurement seems to favour neither color singlet or octet models

CC & HF @ LHUD
Introduction
The LHCb
Performance
cc & HF @ LHCb
Quarkonia
J/ψ(1S)
xc
ψ(2S)
Ϋ́
b Production
B from J/ ψ (1S) X
B from $D^0 X \mu^- \nu_{\mu}$
B from D [*] $\mu^{-} \nu_{\mu}^{\mu}$ X
Open charm
Conclusions

C. Fitzpatrick

 $\chi_{\rm c} \rightarrow {\rm J}/\psi(1{\rm S})\gamma$, 600nb⁻¹

- Already seeing χ_c with sensitivity to χ_{c1}(1P) and χ_{c2}(1P) (30 MeV/c²resolution, fixed)
- The ratio of σ(χ_c)/σ(J/ψ(1S)) is interesting:

 $\chi_{\rm c}$

- Our MC predicts \approx 40% J/ ψ (1S) from χ_c
- > This needs to be measured to properly interpret the inclusive ${\rm J}/\psi({\rm 1S})$ cross-section
- ► We intend to measure cross-sections in p_T as per J/ψ(1S)
- as well as measuring $\sigma(\chi_c)/\sigma(J/\psi(1S))$, $\sigma(\chi_{c1}(1P))/\sigma(\chi_c)$ and $\sigma(\chi_{c2}(1P))/\sigma(\chi_c)$ for both prompt χ_c and χ_c from b quarks

B from J/ ψ (1S) X B from D⁰X $\mu^{-}\nu_{\mu}$ B from D^{*} $\mu^{-}\nu_{\mu}$ X

Open charm

Conclusions

C. Fitzpatrick

cc & HF @ LHCb

- ▶ Two modes under investigation at LHCb: $\psi(2S) \rightarrow \mu^{-}\mu^{+}$ and $\psi(2S) \rightarrow J/\psi(1S)\pi^{+}\pi^{-}$
- $\psi(2S)$ has essentially no feed-down from higher quarkonia states, so the production cross-section is easier to interpret than $J/\psi(1S)$
- When we have enough statistics production cross-sections in *p*_T will be presented for both prompt and ψ(2S) from b quarks

Introduction
The LHCb
Performance

$$c\bar{c} \& HF @ LHCb$$

Quarkonia
 J/ψ (1S)
X.c.
 ψ (2S)
 Υ
b Production
B from J/ψ (1S) X
B from $D^0X\mu^-\nu_{\mu}$
B from $D^*\mu^-\nu_{\mu}$ X
Open charm
Conclusions

C. Fitzpatrick

Heavier charmonia

► X(3872):

- ▶ Presently we are looking for $X(3872) \rightarrow J/\psi(1S)\pi^+\pi^-$ using $\psi(2S)$ as a cross-check
- Extrapolating backgrounds from the \u03c6(2S) plot shown earlier it is clear we will benefit from focusing on X(3872) from B
 - Separating the X(3872) from the primary vertex greatly reduces combinatoric background
- This analysis is in the early stages: a mass measurement with 50pb⁻¹ this year is looking promising
- \blacktriangleright With a much larger dataset angular analysis of $B^+ \to X(3872) \{J/\psi(1S) \rho^0\} K^+$ should be possible
- ► Z(4430) ±:
 - We intend also to look for $B^0 \rightarrow Z(4430) \pm K^{\mp}$
 - So far sensitivity studies at $\sqrt{s} = 14$ TeV predict 6200 events in 2 fb⁻¹ with 2.7<B/S<5.3
- See CERN-THESIS-2009-129 and LHCb-PUB-2010-003 for more details

cē & HF @ LHCb

Introduction
The LHCb
Performance
cc & HF @ LHCb
Quarkonia
J/ψ(1S)
$\chi_{\rm c}$
ψ(2S)
Υ
b Production
B from J/ ψ (1S) X
B from $D^0 X \mu^- \nu_{\mu}$
B from D [*] $\mu^{-} \nu^{\mu}_{\mu} X$
Open charm
Conclusions

C. Fitzpatrick

- \approx 50 MeV/ c^2 mass resolution!
- Υ(1S), Υ(2S), Υ(3S) well separated
- ► Expect a Ŷ(1S) cross-section in p_T and a few y bins by the winter conferences

C. Fitzpatrick

B from J/ ψ (1S) X

- The LHCb J/ψ(1S) analysis uses the pseudo-propertime distribution (tz) to separate prompt and "from b " components in a simultaneous fit to tz and the μ⁻ μ⁺ invariant mass
- > The fraction of inclusive J/ ψ (1S) from b in the J/ ψ (1S) analysis acceptance is $f_b = 11.1 \pm 0.8\%$
- σ (J/ ψ (1S) from b) = (0.81 ± 0.06 ± 0.13) µb ($p_{\rm T}$ < 10 GeV/c, 2 < y < 4.5)
- This is extrapolated to a b hadron cross-section on $2 < \eta < 6$ and a total $b\overline{b}$ cross-section using the LEP hadronisation fractions and MC (Pythia 6.4) to determine the acceptance:
 - $\sigma(pp \rightarrow H_bX) = (84.5 \pm 6.3 \pm 15.6) \, \mu b \, (2 < \eta < 6)$
 - $\sigma(pp \rightarrow b\overline{b}X) = (319 \pm 24 \pm 59) \,\mu b$

cc & HF @ LHCb

Introduction The LHCb Performance cc & HF @ LHCb Quarkonia $J/\psi(1S)$ χ_{c} $\psi(2S)$ Υ h Production B from $J/\psi(1S) X$ B from $D^0 X \mu^- \nu_{\mu}$ B from $D^* \mu$ $\nu_{\mu} X$ Open charm Conclusions

C. Fitzpatrick October 11, 2010

B from $D^0 X \mu^- \nu_\mu$

- The first b cross-section published at $\sqrt{s} = 7 \text{ TeV} (arXiv:1009.2731v1)$
- D⁰ μ⁻ + h.c. reconstructed (right sign) and compared to D⁰ μ⁺ + h.c. (wrong sign) for background determination (Above: With 100 nb⁻¹)
- For the publication, two datasets used:
 - "microbias" requiring at least one track in the VELO or tracking stations: 2.9 nb⁻¹
 - "muon triggered" requiring one identified muon per event: 12.2 nb⁻¹
 - These results are then averaged

cc & HF @ LHCb

Introduction The LHCb Performance cc & HF @ LHCb Quarkonia $J/\psi(1S)$ χ_{c} $\psi(2S)$ Υ **b** Production B from $J/\psi(1S) X$ B from $D^0 X \mu^- \nu_{...}$ B from $D^* \mu^- \nu_{\mu} X$ Open charm Conclusions

C. Fitzpatrick

B from $D^0 X \mu^- \nu_\mu$

cē & HF @ LHCb

- Prompt candidates (red) have a smaller IP than those from b (blue)
- The prompt yield is consistent between right-sign and wrong-sign distributions
- The yield of D⁰ from b is determined in bins of 2 < η < 6 using a simultaneous 2D fit to the D⁰ mass and In(IP) distributions

C. Fitzpatrick

B from $D^0 X \mu^- \nu_\mu$

- MCFM: NLO using MSTW8NL
- CNFMR: NNLO using CTEQ6.5 including b and \overline{b} fragmentation into hadrons
- $\sigma(pp \rightarrow H_b X) = (75.3 \pm 5.4 \pm 13.0) \ \mu b \ (2 < \eta < 6)$
- Again extrapolated using MC and the LEP hadronisation fractions:
- $\sigma(pp \rightarrow b\overline{b}X) = (284 \pm 20 \pm 49) \,\mu b$
 - Excellent agreement between datasets and theory!
 - previously published sensitivity studies assumed 250 µb

cc & HF @ LHCb

Introduction The LHCb Performance cc & HF @ LHCb Quarkonia $J/\psi(1S)$ χ_{c} $\psi(2S)$ Υ h Production B from $J/\psi(1S) X$ B from $D^0 X \mu^- \nu$ B from $D^* \mu$ $\nu_{\mu} X$ Open charm Conclusions

C. Fitzpatrick

B from $D^* \mu^- \nu_\mu X$

- ▶ Using 14.9nb⁻¹ an independent analysis has been performed selecting $B^0 \rightarrow D^* \mu^- \nu_\mu X$
- ▶ D^{*} μ^- Yields determined from simultaneous fit to $M(K^+\pi^-)$ (right) and $\Delta M = M(K^{+}\pi^{-}\pi^{-}) - M(K^{+}\pi^{-})$ (left)

The LHCb Performance cc & HF @ LHCb Quarkonia $J/\psi(1S)$ χ_{c} $\psi(2S)$ Υ **b** Production B from $J/\psi(1S) X$ B from $D^0 X \mu^- \nu_{...}$ B from $D^* \mu^- \nu_{\mu} X$ Open charm Conclusions

C. Fitzpatrick

B from $\mathrm{D}^* \; \mu^- \; \nu_{\!\mu} \; \mathrm{X}$

D* incl.

- In this analysis the prompt component is fixed using an inclusive D* selection to boost statistics (left)
- $\sigma(pp \rightarrow B^0X) = (73 \pm 12 \pm 17) \ \mu b \ (2 < \eta < 6)$
- $\sigma(pp \rightarrow b\overline{b}X) = (275 \pm 44 \pm 66) \,\mu b$

cē & HF @ LHCb

C. Fitzpatrick

Open Charm

C. Fitzpatrick

October 11, 2010

18/24

- P Open charm production cross-sections at √s = 7 TeV in bins of 0 < p_T < 8 GeV/c, 2 < y < 5.</p>
- The analysis strategies for the 4 measurements are independent, and results are cross-checked:
 - D⁰ cross section consistent with the D⁰ yield from D* analysis
 - D^+ cross section consistent with the D^+ yield from D_s^+ analysis and vice-versa

Open Charm

 As with previously presented results, we use the Impact Parameter wrt. the Primary Vertex to discriminate between prompt charm and those coming from b hadrons

- For the other analyses these are determined from a fit in bins of p_T,y.
- Results are compared to theory predictions from two groups
 - MC et. al: M. Cacciari, S. Frixione, M. Mangano, M. Nason, G. Ridolfi
 - BAK et. al: B. A. Kniehl, G. Kramer, I. Schienbein, H. Spiesberger

cē & HF @ LHCb

Introduction The LHCb Performance cc & HF @ LHCb Quarkonia $J/\psi(1S)$ χ_{c} $\psi(2S)$ Υ h Production B from $J/\psi(1S) X$ B from $D^0 X \mu$ B from $D^* \mu^- \nu_{\mu} X$ Conclusions

C. Fitzpatrick

D⁰ cross-section

cē & HF @ LHCb

Introduction The LHCb Performance $c\bar{c} \& HF @ LHCb$ Quarkonia $J/\psi(1S)$ χ_c $\psi(2S)$ Υ b Production B from $J/\psi(1S) X$ B from $D^0 X \mu^- \nu_\mu$ B from $D^* \mu^- \nu_\mu X$

Conclusions

C. Fitzpatrick

D* cross-section

cē & HF @ LHCb

Introduction The LHCb Performance $c\bar{c} \& HF @ LHCb$ Ouarkonia $J/\psi (1S)$ χ_c $\psi (2S)$ γ b Production B from $J/\psi (1S) X$ B from $D^0 X \mu^- \nu_\mu X$ Open charm Conclusions

C. Fitzpatrick

D⁺ cross-section

cc & HF @ LHCb

Introduction The LHCb Performance cc & HF @ LHCb Quarkonia $J/\psi(1S)$ χ_{c} $\psi(2S)$ Υ **b** Production B from $J/\psi(1S) X$ B from $D^0 X \mu^-$ · v, B from D^{*} $\mu^- \nu_{\mu} X$ Conclusions

C. Fitzpatrick

D_s^+ cross-section

cc & HF @ LHCb

- ► The D⁺_s analysis also selects D⁺
- ► This allows us to measure the ratio σ_{D⁺}/σ_{D⁺s}
- luminosity, particle ID, tracking systematics cancel
- $\sigma_{\rm D^+}/\sigma_{\rm D_s^+} = 2.32 \pm 0.27 \pm 0.26$
- ► Result is consistent with $f(c \rightarrow D^+)/f(c \rightarrow D_s^+) =$ 3.08 ± 0.70 (PDG)

Introduction The LHCb Performance $c\bar{c} \& HF @ LHCb$ Quarkonia $J/\psi(1S)$ χ_c $\psi(2S)$ Υ b Production B from $J/\psi(1S) X$ B from $D^0 X \mu^- \nu_{\mu}$ B from $D^0 X \mu^- \nu_{\mu}$

Open charr

Conclusions

C. Fitzpatrick

Conclusions

- LHCb probes a unique and unexplored domain with respect to previous experiments
- $\blacktriangleright\,$ This talk has presented cross-section measurements from LHCb with the 2010 data in b and c
- $J/\psi(1S)$ appears to favor neither the color singlet or color octet models
 - Further measurements will include polarisation and $\chi_{\rm c}, \psi(2{\rm S})$ cross-sections
- Three separate b b production cross sections have been measured with excellent agreement
- Open charm results show good agreement with theory predictions
- We expect to measure the X(3872) mass this year

cē & HF @ LHCb

Introduction The LHCb Performance $c\bar{c} \& HF @ LHCb$ Cuarkonia $J/\psi (1S)$ χ_c $\psi (2S)$ Υ b Production b Froduction b from $J/\psi (1S) X$ B from $D^0 X \mu^- \nu_\mu$ B from $D^* \mu^- \nu_\mu X$

Open charm

Conclusions

C. Fitzpatrick

$J/\psi(1S)$ polarisation

Total Efficiency (MC)

Cross-section measurement

- ► J/ ψ (1S) cross-section assuming three polarisations: fully longitudinal ($\alpha = -1$), unpolarised ($\alpha = 0$), fully transverse ($\alpha = 1$)
- > Ignoring the azimuthal dependence the angular distribution of the J/ ψ (1S) is:

$$\frac{dN}{d\cos\theta} = \frac{1+\alpha\cos^2\theta}{2+2\times\alpha/3}$$

• θ is the angle made by the positive muon momentum in the J/ ψ (1S) CM frame WRT the J/ ψ (1S) momentum in the Lab frame

 $\mathrm{c}\overline{\mathrm{c}}$ & HF @ LHCb

Backup Slides $J/\psi(1S)$ polarisation

C. Fitzpatrick

