Rare B Decays: Results and Prospects in ATLAS

Heavy Quarks & Leptons INFN – Frascati, October 15th, 2010

> Valentin Sipică for the ATLAS collaboration

University of Siegen

SPONSORED BY THE

Federal Ministry of Education and Research

ATLAS detector

Inner Detector (ID)

(high granularity tracking detector)

- Pixel Detector: point resolution of 10 μm (R-φ) and 110 μm (z)
- SCT Si strip detector: point resolution of 17 μm (R-φ) and 580 μm (z)
 - TRT transition radiation tracker: point

Muon Spectrometer (MS)

- Precision tracking chambers:
 - MDT, CSC (~40 μ m space resolution)
- > Fast trigger chambers:
 - RPC, TGC (~ 10 ns time resolution)

resolution of 130 μm **Precise measurements of muons (MS+ID) important for rare B decays!**

Motivation: $b \rightarrow s\mu^-\mu^+$ transitions

Motivation: di-muonic B decays

D0: BR < 5.1 x 10⁻⁸ @ 95% CL [ICHEP2010]

ATLAS trigger system design

PIPELINE MEMORIES

DERANDOMIZERS

READ-OUT

READ-OUT

BUFFERS (ROBs)

FULL-EVENT BUFFERS &

PROCESSOR SUBFARMS

DRIVERS (RODs)

Trigger/DAQ System

CALO MUON TRACKING

EVENT BUILDER

MASS STORAGE

FOR OFFLINE ANALYSIS

40 MHz

75 kHz

2 kHz

200 Hz

Level 1 (LVL1)

- Hardware based
- Detect muon signatures using dedicated fast tracking chambers
- Identify Regions of Interest (Rol)
 - Reduce input rate from maximum 40 MHz (bunch crossing rate) to 75 kHz

Level 2 (LVL2)

- Software based
- Confirm LVL1 signatures using precision detectors
- Extrapolate muon tracks to ID and refit inside Rol
- Output rate 2 kHz

Event Filter (EF)

- Software based
- Refine LVL2 decision using offline-like algorithms
- Further selection possible using vertexing, decay length, angular distributions
- Output rate 200 Hz (~5-10% available for B Physics)

Di-muon (common vertex) events

- Di-muon invariant mass spectrum should include:
 - Heavy quarkonia (J/ψ, Y...) decaying to μ⁺μ⁻

- Di-muon (common vertex) events
- Di-muon invariant mass spectrum should include:
 - Heavy quarkonia (J/ψ, Y...) decaying to μ⁺μ⁻
 - > Very rare decays: $B_s^{\ 0} \rightarrow \mu^+\mu^-$
 - Semileptonic decays: b → s µ⁺µ⁻
 - Continuum in di-muon mass spectrum (Drell-Yan)
- Invariant mass range to trigger: 0 < M(μμ) < 13 GeV</p>

 $m_{\mu\mu}$ [GeV]

- Events recorded if either one of the following triggers fired:
 - LVL1 muon trigger, no cut on min p_T
 - Minimum bias trigger
- Offline selection: $p_T(\mu_1) > 2.5 \text{ GeV}$,

 $p_T(\mu_2) > 4 \text{ GeV}$

Corresponding to: L = 290 nb⁻¹

Di-muon HLT trigger for rare B decays

10³

Single muon trigger performance

Performance determined by comparing the number of events passing a certain trigger w.r.t. offline muons (offline matching criteria $\Delta R < 0.5$)

- LVL1_MU4 (barrel): ~76% from a max. of 82% (due to geometrical acceptance)
- LVL1_MU4 (endcap): ~94% (~100% geometrical acceptance)
- LVL2_MU6: ~97% w.r.t. LVL1
- **EF_MU6:** ~99% w.r.t. LVL2

Di-muon trigger performance

Strategy for $B_s{}^0 \to \mu^+ \mu^-$

Perform search for the decays

Interested in determining the branching ratio

Normalized to a well determined reference channel:

 $B^{\scriptscriptstyle +} \!\! \to J/\psi \; (\mu^{\scriptscriptstyle +} \! \mu^{\scriptscriptstyle -}) \; K^{\scriptscriptstyle +}$

Systematic errors for signal and normalization channels nearly cancel each other

$$BR(B_{s} \to \mu^{+}\mu^{-}) = \frac{N_{B_{s}}}{N_{B^{+}}} \cdot \frac{\alpha_{B^{+}}}{\alpha_{B_{s}}} \cdot \frac{\varepsilon_{B^{+}}}{\varepsilon_{B_{s}}} \cdot \frac{f_{u}}{f_{s}} \cdot BR(B^{+} \to J/\psi K^{+}) \cdot BR(J/\psi \to \mu^{+}\mu^{-})$$

 $> N_{Bs} (N_{B^+}) - no.$ of events after selection

 $> \alpha_{Bs} (\alpha_{B^{+}}) - \text{geometric and kinematic acceptance}$

 $\geq \epsilon_{Bs} (\epsilon_{B}^{+}) - \text{total efficiency}$

 $> f_{u,} f_s - b$ -quark fragmentation probabilities

J/Ψ → μ⁺μ⁻ Events recorded with either one of the following triggers:

LVL1 muon trigger, no cut on minimum p_{τ}

Minimum bias trigger
 Offline selection:

 $p_T(\mu_1) > 2.5 \text{ GeV},$ $p_T(\mu_2) > 4 \text{ GeV}$

B⁺ → J/Ψ K⁺
Based on simulated data
Selection cuts used for the B⁰_s → μ⁺μ⁻ selection not included here
Mass resolution: ~ 42 MeV

Backgrounds

Exclusive decays of B mesons:

▶ Hadron misidentification $(B_{s(d)}^{0} \rightarrow h_1^-h_2^+, B_{s(d)}^{0} \rightarrow h^-\mu^+\nu_\mu)$

e.g.:

Decay channel	Branching ratio
$B^0 \to K^+ \pi^-$	(1.82 ± 0.08) x 10 ⁻⁵
$B^0 \to \pi^+ \pi^-$	(4.6 ± 0.4) x 10 ⁻⁶
$B_s^{\ 0} \rightarrow \pi^+ K^-$	< 2.1 x 10 ⁻⁴ @ 90% CL
$B_s^{\ 0} \to K^{\text{-}} \mu^{\text{+}} \nu$	~1.32 x 10 ⁻⁴

Combinatorial background: bb → $\mu^+\mu^-X$

- Sources of prompt μμ pairs (J/ψ, Drell-Yan)
- In flight decays and material interactions

Selection cuts (1)

α

Selection cuts (2)

Background rejection

Exclusive channels well suppressed in the B_s⁰ mass region
 Major contribution remaining from combinatorial background

Efficiency & event yield

Selection cut	$B_s^{\ 0} \!$	b b → μ⁺μ⁻ Χ	
Ι _{μμ} > 0.9	0.24	(2.6 ± 0.3) x 10 ⁻²	
L _{xy} > 0.5 mm	0.26	$(1.4 \pm 0.1) \times 10^{-2}$	$(1 0 \pm 0.7) \times 10^{-3}$
α < 0.017	0.23	(8.5 ± 0.2) x 10 ⁻³	$(1.0 \pm 0.7) \times 10^{\circ}$
Μ(μμ)	0.76	0.079	
Total efficiency	0.04	0.24 x 10 ⁻⁶	(2.0 ± 1.4) x 10 ⁻⁶
Events (10 fb ⁻¹)	5.7		14 ⁺¹³ ₋₁₀

- Cut factorisation applied: $\varepsilon_{total} = \varepsilon_{I_{\mu\mu}} \cdot \varepsilon_{M_{\mu\mu}} \cdot \varepsilon_{L_{xy},\alpha}$
- Low correlations between variables, except L_{xv} and α
- Expected events for 10 fb⁻¹:
 - 5.7 signal
 - 14 background

Summary

Rare (semi-)muonic decays of B mesons may give an indirect evidence of New Physics:

> b → s
$$\mu^+\mu^-$$
 transitions (forward-backward asymmetry),

 $> B_s^0 \rightarrow \mu^+ \mu^-$ (branching ratio).

Single muon trigger performance was determined from data, with efficiencies at plateau:

LVL1: ~76% (barrel), ~94% (endcap),
 LVL2: ~97%,
 EF: ~99%.

Efficiency map $\epsilon(p_{T})$ obtained using "tag and probe" for LVL1 single muon trigger. This is used in determining the di-muon trigger efficiency.

Expected number of events for 10 fb⁻¹ using the B⁰_s → µ⁺µ⁻ analysis:
 5.7 (signal),
 14 (background).

Back-up slides

Event selection

Background rejection

ATLAS