Highlights in Kaon Decays

A Theorists Perspective

Heavy Quarks \& Leptons
INFN, Laboratori Nazionali di Frascati
12.10.20IO

Martin Gorbahn

TU München
TUM-IAS \&
Excellence Cluster 'Universe'

Excellence Cluster |Universe

What can we learn from Kaons?

\Rightarrow Determination of fundamental parameters - CKM unitarity
-Lepton universality

- Mass determination
\Rightarrow Test suppression of top-dominated FCNCs
- Rare decays
-CP violation

Many more interesting things - only 30 minutes

Leptonic and Semileptonic

Observables: $\mathrm{K}(\pi) \rightarrow \mathrm{l} \bar{\gamma}_{l} \quad \& \quad \mathrm{~K} \rightarrow \pi \mathrm{l} \bar{\nu}_{l}$

$$
\begin{aligned}
& \text { Neufeld `08] } \\
& \Gamma\left(K_{\ell 3(\gamma)}\right)=\frac{G_{F}^{2} m_{K}^{5}}{192 \pi^{3}} C_{K} S_{\mathrm{ew}}{\|\left. V_{u s}\right|^{2} f^{\prime}(0)^{2} I_{K}^{\ell}\left(\lambda_{+, 0}\right)\left(1+\delta_{S U(2)}^{K}+\delta_{\mathrm{em}}^{K \ell}\right)^{2}}^{2} \\
& \text { Isospin breaking effects: Flavianet `ı }
\end{aligned}
$$

Lattice input:Talk by Vittorio Lubicz

Talk on measurement of semileptonic form factors: Hita Hochgesand

CKM Unitarity

$$
\begin{array}{ll}
\Gamma\left(\mathrm{K}_{\mathrm{l3}}\right) & \left|\mathrm{V}_{\mathbf{u s}}\right| \mathrm{f}_{+}(0)=0.2163(5) \\
\frac{\Gamma\left(\mathrm{K}_{\mathrm{l2}}\right)}{\Gamma\left(\pi_{\mathrm{l} 2}\right)} & \frac{\left|\mathrm{V}_{\mathrm{us}}\right| \mathrm{f}_{\mathrm{K}}}{\left|\mathrm{~V}_{\mathrm{ud}}\right| \mathrm{f}_{\pi}}=0.2758(5)
\end{array}
$$

[Flavianet `IO]
and nuclear β decay

$$
\mathrm{V}_{\mathrm{ud}}=0.97425(22)
$$

[Hardy,Towner `08]

$$
\begin{aligned}
\Delta_{\text {CKM }} & =\left|\mathrm{V}_{\mathbf{u d}}^{2}\right|+\left|\mathrm{V}_{\mathbf{u s}}^{2}\right|+\left|\mathrm{V}_{\mathbf{u b}}^{2}\right|-1 \\
& =(0.1 \pm 0.6) \times 10^{-3}
\end{aligned}
$$

4 relations 4 parameters

CKM Unitarity (Model Independent)

[Cirigliano et. al. `09]

$\Lambda_{N P} \gg M_{W}$
 Neglect $\mathcal{O}\left(\frac{M_{W}}{\Lambda_{N P}}\right)$
 corrections

Use $\mathrm{SU}(2) \otimes \mathrm{U}(\mathrm{I})$ invariant operators [Buchmüller-Wyler ${ }^{006]}$ (plus $\mathrm{U}(3)^{5}$ flavour symmetry)
$\mathrm{O}_{\mathrm{lq}}^{(3)}=\left(\overline{\mathrm{l}} \gamma^{\mu} \sigma^{\mathrm{a}} \mathrm{l}\right)\left(\overline{\mathrm{q}} \gamma_{\mu} \sigma^{\mathrm{a}} \mathbf{q}\right) \quad \mathrm{O}_{\mathrm{ll}}^{(3)}=\frac{1}{2}\left(\overline{\mathrm{l}} \gamma^{\mu} \sigma^{\mathrm{a}} \mathrm{l}\right)\left(\overline{\mathrm{l}} \gamma_{\mu} \sigma^{\mathrm{a}} \mathrm{l}\right)$
Constrained from EW precision data [Han, Skiba ${ }^{\text {05] }}$

Redefine

$$
\mathrm{G}_{\mathrm{F}}(\mu \rightarrow \mathrm{ev} \bar{v}) \rightarrow \mathrm{G}_{\mathrm{F}}\left(1-2 \bar{\alpha}_{l l}^{(3)}\right) \longrightarrow \mathrm{G}_{\mathrm{F}}^{\mu}
$$

$$
\mathrm{G}_{\mathrm{F}}(\mathrm{~d} \rightarrow \mathrm{ue} \bar{v}) \rightarrow \mathrm{G}_{\mathrm{F}}\left(1-2 \bar{\alpha}_{\mathrm{lq}}^{(3)}\right) \longrightarrow \mathrm{G}_{\mathrm{F}}^{S L}
$$

CKM Unitarity (Model Independent)

$$
\mathrm{V}_{\mathfrak{u} d_{i}}^{\mathrm{PDG}}=\frac{\mathrm{G}_{\mathrm{F}}^{\mathrm{SL}}}{\mathrm{G}_{\mathrm{F}}^{\mu}} \mathrm{V}_{\mathrm{ud}_{\mathrm{i}}} \longrightarrow \Delta_{\mathrm{CKM}}=4\left(\bar{\alpha}_{\mathrm{ll}}^{(3)}-\bar{\alpha}_{\mathrm{a}_{\mathrm{q}}}^{(3)}+\ldots\right)
$$

[Cirigliano et. al. `09]
from HEP
HEP + CKM
CKM
$\mathrm{O}_{\mathrm{lq}}^{(3)}=\left(\overline{\mathrm{l}} \gamma^{\mu} \sigma^{\mathrm{a}} \mathrm{l}\right)\left(\overline{\mathrm{q}} \gamma_{\mu} \sigma^{\mathrm{a}} \mathrm{q}\right)$

$$
\Lambda_{\mathrm{NP}}>10 \mathrm{TeV} \ll \quad \begin{aligned}
& -\mathbf{- 1} \alpha_{1}^{(3)} \times \mathbf{1 0}^{\mathbf{0}}{ }^{\mathbf{1}}{ }^{2} \\
& \mathrm{O}_{\mathrm{ll}}^{(3)}=\frac{1}{2}\left(\bar{l} \gamma^{\mu} \sigma^{\mathrm{a}} \mathrm{l}\right)\left(\bar{l} \gamma_{\mu} \sigma^{\mathrm{a}} \mathrm{l}\right)
\end{aligned}
$$

Leptonic and Semileptonic

$$
K(\pi) \rightarrow l \bar{v}_{l} \quad \& \quad K \rightarrow \pi l \bar{v}_{l}
$$

Observables

$$
\mathrm{R}_{\mathrm{K}}=\frac{\Gamma(\mathrm{K} \rightarrow e \bar{v})}{\Gamma(\mathrm{K} \rightarrow \mu \bar{v})} \quad \mathrm{R}_{\mathrm{K}}^{\mathrm{SM}}=2.477(1) \times \underset{\substack{\left.\left[\text { Cirigliano, Rosell }{ }^{\circ} 07\right] \\ \text { See also[Marciano, Sirlin }{ }^{\circ} 93\right]}}{1 \mathrm{~S}^{-5}}
$$

$$
\begin{aligned}
& \left.\mathrm{R}_{\mathrm{K}}^{\mathrm{NA} 62}=2.486(11)(7) \times 10^{-5} \quad \text { [NA62 June `। } 10\right] \\
& \mathrm{R}_{\mathrm{K}}^{\text {KLOE }}=2.493(25)(19) \times 10^{-5} \quad[\text { [EP C64 (2009) 627] }
\end{aligned}
$$

Test of lepton universality violation driven by experimental precision

Experimental talks by Antoni Sergi and Barbara Sciascia

Lepton Universality in the MSSM

LF Conserving: ~ lepton mass

$\underset{\text { [Masiero, Paradisi, Petronzio }{ }^{\circ} \text { 08] }}{\text { Lepton Flavour Violation: } \Delta_{R}^{31} \sim \frac{g_{2}^{2}}{16 \pi^{2}} \delta_{R R}^{31}}$

$$
R_{K}^{\mathrm{LFV}}=\frac{\Gamma_{\mathrm{SM}}\left(\mathrm{~K} \rightarrow e v_{e}\right)+\Gamma_{\mathrm{SM}}\left(\mathrm{~K} \rightarrow e v_{\tau}\right)}{\Gamma_{\mathrm{SM}}\left(\mathrm{~K} \rightarrow \mu v_{\mu}\right)}
$$

$\Delta \mathrm{r}_{\mathrm{K}} \sim \frac{\mathrm{m}_{\mathrm{K}}^{4}}{\mathrm{~m}_{\mathrm{H}^{+}}^{4}} \frac{\mathrm{~m}_{\tau}}{\mathrm{m}_{e}}\left|\Delta_{\mathrm{R}}^{31}\right|^{2} \tan _{\beta}^{6} \longrightarrow$ can reach 10^{-2}
But: finetuning of m_{e} necessary [Girrbach et. al. '09]

Light-Quark Masses from Lattice QCD

Extract $m_{u, d} \& m_{s}$ from $\frac{M_{\pi}}{f_{\pi}} \& \frac{M_{K}}{M_{\pi}}$ using Lattice QCD
\rightarrow Connect lattice and $\overline{\mathrm{MS}}$ renormalization scheme:
Find a scheme good for lattice \& loops: RI/SMOM [sturm etal: 0 or]
$q^{2}=-\mu^{2} \times \omega$ off-shell

Prove that good convergence at NLO is no accident
\rightarrow NNLO: error on mass 2% [Gorbahn, Jager ` 10]

Rare Kaon Decays

FCNCs which are dominated by top-quark loops:

$$
\begin{array}{ccc}
\mathrm{b} \rightarrow \mathrm{~s}: & \mathrm{b} \rightarrow \mathrm{~d}: & s \rightarrow \mathrm{~d}: \\
\left|\mathrm{V}_{\mathrm{tb}}^{*} \mathrm{~V}_{\mathrm{ts}}\right| \propto \lambda^{2} & \left|\mathrm{~V}_{\mathrm{tb}}^{*} \mathrm{~V}_{\mathrm{td}}\right| \propto \lambda^{3} & \left|\mathrm{~V}_{\mathrm{ts}}^{*} \mathrm{~V}_{\mathrm{td}}\right| \propto \lambda^{5}
\end{array}
$$

CKM suppression: enhanced sensitivity to NP
$V_{t s}^{*} V_{t d}+V_{c s}^{*} V_{c d}=-V_{u s}^{*} V_{u d}$ λ^{5}
 λ
how can we suppress the light quark contribution?
Quadratic GIM: $\lambda \frac{m_{c}^{2}}{M_{W}^{2}}$
CP violation: $\operatorname{Im}\left(V_{c s}^{*} V_{c d}\right)$
 [Straub@CKM`I0] $10^{10} \times \mathrm{BR}\left(K^{+} \rightarrow \pi^{+} \nu \bar{\nu}\right)$

GIMnastics

Quadratic GIM suppresses light quark contribution

No quadratic suppression for $\mathrm{K}_{\mathrm{L}} \rightarrow \gamma \gamma$

$G_{F} \log \frac{\Lambda_{\mathrm{QCD}}}{m_{c}}$
$\frac{\alpha}{4 \pi} \times K_{L} \rightarrow \gamma \gamma \quad$ also contributes to: $\quad K_{L} \rightarrow \mu^{+} \mu^{-}$

No couplings to $\gamma \mathrm{s}: \mathrm{K} \rightarrow \pi v \bar{v}$

- Dominant Operator: $\mathrm{Q}_{\nu}=\left(\bar{s}_{\mathrm{L}} \gamma_{\mu} \mathrm{d}_{\mathrm{L}}\right)\left(\bar{v}_{\mathrm{L}} \gamma^{\mu} v_{\mathrm{L}}\right)$

$$
\begin{aligned}
& \sum_{i} V_{i s}^{*} V_{i d} F\left(x_{i}\right)=V_{t s}^{*} V_{t d}\left(F\left(x_{t}\right)-F\left(x_{u}\right)\right)+V_{c s}^{*} V_{c d}\left(F\left(x_{c}\right)-F\left(x_{u}\right)\right) \\
& \quad \text { Quadratic GIM: } \quad \lambda^{5} \frac{m_{t}^{2}}{M_{W}^{2}} \lambda \frac{m_{c}^{2}}{M_{W}^{2}} \ln \frac{M_{W}}{m_{c}} \lambda \frac{\Lambda^{2}}{M_{W}^{2}}
\end{aligned}
$$

$\mathrm{K}_{\mathrm{L}} \rightarrow \pi^{0} \bar{v} v:$ Effective Hamiltonian

CP violating

including
NLO EW
[Bord, Gorbahn, Stamou `IO]

Only top quark contributes: $H_{e f f}=\frac{4 G_{F}}{\sqrt{2}} \frac{\alpha V_{t s}^{*} V_{t d}}{2 \pi \sin ^{2} \Theta_{W}} X\left(x_{t}\right) Q_{v}$
Use isospin symmetry and normalise to: $\mathrm{K}^{+} \rightarrow \pi^{0} e^{+} \nu$

$$
\mathcal{B r}\left(\mathrm{K}_{\mathrm{L}} \rightarrow \pi^{0} \overline{\mathcal{v}} \boldsymbol{v}\right)=\mathrm{K}_{\mathrm{L}}\left(\frac{\operatorname{Im}\left(\mathrm{~V}_{\mathrm{ts}}^{*} \mathrm{~V}_{\mathrm{td}}\right)}{\lambda^{5}} \mathrm{X}\left(\mathrm{x}_{\mathrm{t}}\right)\right)^{2}
$$

$K_{L} \rightarrow \pi^{0} \nu \bar{\nu}:$ Theoretical Status

Experiment: $<6.7 \times 10^{-8}$ [E391a ${ }^{\text {o } 08]}$
=> KOTO

$\mathrm{K}^{+} \rightarrow \pi^{+} \bar{\nu} v$ and K_{L} $\longrightarrow \pi^{0} \vee \vee$

Different from $K_{L} \rightarrow \pi^{0} \bar{v} v$

- CP conserving:Top \& charm contribute

$$
\operatorname{Br}\left(\mathrm{K}^{+} \rightarrow \pi^{+} v \bar{v}(\gamma)\right)=\mathrm{K}_{+}\left(1+\Delta_{\mathrm{EM}}\right)
$$

$$
\times\left|\frac{V_{t s}^{*} V_{t d} X_{t}\left(m_{t}^{2}\right)+\lambda^{4} \operatorname{Re}_{c \mathrm{cs}}^{*} V_{c d}\left(P_{c}\left(m_{c}^{2}\right)+\delta P_{c, u}\right)}{\lambda^{5}}\right|^{2}
$$

$\frac{\mathfrak{m}_{c}^{2}}{M_{W}^{2}}$ suppression lifted by $\log \left(\frac{m_{c}}{M_{W}}\right) \frac{1}{\lambda^{4}}$
Like in $K_{L} \rightarrow \pi^{0} \bar{v} v$

- Only Q_{ν} : Quadratic GIM \& Isospin symmetry
- Top quark contribution like in $\mathrm{K}_{\mathrm{L}} \rightarrow \pi^{0} \bar{v} v$

$\mathrm{K}^{+} \rightarrow \pi^{+} \bar{v} \nu$ charm contribution

Long Distance Contribution

No GIM below the charm quark mass scale q^{2} / m_{c}^{2} higher dimensional operators UV scale dependent

One loop CHPT calculation approximately cancels this scale dependence [lsidori, Mescia, Smith 05]

Also: box-type diagrams considered
(from two semileptonic operator insertions) cancelation is more complicated

$$
\delta \mathrm{P}_{\mathrm{c}, \mathrm{u}}=0.04 \pm 0.02 \quad \text { [Isidori, Mescia, Smith `05] }
$$

One Current \& One Operator

$\left.\left(\mathcal{T}_{i}^{j}\right)_{\mathrm{em}}^{\mu}\left(q^{2}\right)=-i \int d^{4} x e^{-i q \cdot x}\left\langle\pi^{j}(p)\right| T\left\{\mathcal{U e m}_{J^{\mu}(x)}^{Q_{i}^{u}(0)-Q_{i}^{c}(0)}\right\}\right\}\left|K^{j}(k)\right\rangle$
Current and operator insertion
[Isidori, Martinelli, Turchetti `06]
$\mathcal{O}\left(\frac{1}{a^{2}}\right)$ divergence mass independent: cancelled by GIM
$\mathcal{O}\left(\frac{1}{a}\right)$ appear \rightarrow maximally
twisted fermions

also: no semileptonic operators discussed

$\mathrm{K}^{+} \rightarrow \pi^{+} \bar{v} \nu$ Error Budget

Theory error budget $\quad \mathcal{B}_{K^{+}}=0.822(69)(29) \times 10^{-10}$

Uncertainty reduced by a factor 7 by (N)NLO XPT calculation[Mescia, Smith 07]

Direct CPViolating

$$
\begin{aligned}
\mathrm{Q}_{7 V}= & \left(\bar{s}_{\mathrm{L}} \gamma_{\mu} \mathrm{d}_{\mathrm{L}}\right)\left(\bar{l}^{\mu} \gamma^{l}\right) \rightarrow 1^{--} \\
\mathrm{Q}_{7 \mathrm{~A}}= & \left(\bar{s}_{\mathrm{L}} \gamma_{\mu} \mathrm{d}_{\mathrm{L}}\right)\left(\bar{l}^{\mu} \gamma_{5} \mathrm{l}\right) \\
& \rightarrow 1^{++}, 0^{-+}
\end{aligned}
$$

Wilson Coefficients: $y_{7 V}, y_{7 A}$ at NLO [Buchalla et al. '96]

CP Conserving

Indirect CPViolating

$\mathrm{K}_{\mathrm{L}} \rightarrow \pi^{0} l^{+} l^{-}:$Three Contributions

Counterterm $\left|\mathrm{a}_{\mathrm{S}}\right|=1.2 \pm 0.2$ from
[D'Ambrosio et. al. '98, Mescia et. al. '06] $\quad \mathrm{K}_{S} \rightarrow \pi^{0} l^{+} l^{-}$
For 1^{--}interference with $\mathrm{Q}_{7 V}$
[Buchalla et. al. '03, Friot et al. '04]

Estimate from $\mathrm{K}_{\mathrm{L}} \rightarrow \pi^{0} \gamma \gamma$ [Isidori et. al. '04]
$\operatorname{Br}\left(\mathrm{K}_{\mathrm{L}} \rightarrow \pi^{0} \ell^{+} \ell^{-}\right)=\left(\mathrm{C}_{\mathrm{dir}}^{\ell} \pm \mathrm{C}_{\mathrm{int}}^{\ell}\left|\mathrm{a}_{\mathrm{S}}\right|+\mathrm{C}_{\text {mix }}^{\ell}\left|\mathrm{a}_{\mathrm{S}}\right|^{2}+\mathrm{C}_{\gamma \gamma}^{\ell}\right) \times 10^{-12}$

ℓ	$\left(\mathrm{C}_{\text {dir }}^{\ell}\right.$	$\mathrm{C}_{\text {int }}^{\ell}$	$\mathrm{C}_{\text {mix }}^{\ell}$	$\mathrm{C}_{\gamma \gamma}^{\ell}$
e	$(4.62 \pm 0.24)\left(y_{V}^{2}+y_{A}^{2}\right)$	$(11.3 \pm 0.3) \mathrm{y}_{V}$	14.5 ± 0.5	≈ 0
μ	$(1.09 \pm 0.05)\left(\mathrm{y}_{V}^{2}+2.32 \mathrm{y}_{\mathrm{A}}^{2}\right)$	$(2.63 \pm 0.06) \mathrm{y}_{V}$	3.36 ± 0.20	5.2 ± 1.6

$\mathrm{K}_{\mathrm{L}} \rightarrow \pi^{0} l^{+} l^{-}$: Improvements

- Measure both $\mathcal{B r}_{e^{+}} e^{-}$and $\mathcal{B r}_{\mu^{+} \mu^{-}}$: [Mescia et.al. ${ }^{06]}$

Disentangle short distance contribution ($y_{7 \mathrm{~V}}, y_{7 \mathrm{~A}}$)

- Dominant theory error in a_{s} :

Forward backward asymmetry. [Mescia, Smith, Trine '06]
Better measurement of $K_{S} \rightarrow \pi^{0} l^{+} l^{-}$

Talk on radiative decays by Monica Pepe

Lattice: $K \rightarrow \pi(\gamma / Z)$ contribution
similar to $K \rightarrow \pi v \bar{v}$ calculation

$$
\begin{array}{cc}
{\left[\mathrm{KTEV}^{\prime}\right. \text { 04] }} & {\left[\mathrm{KTEV}^{\prime} 00\right]} \\
\mathrm{Br}_{e^{+} e^{-}} & \mathrm{Br}_{\mu^{+} \mu^{-}} \\
<28 \times 10^{-11} & <38 \times 10^{-11}
\end{array}
$$

$\epsilon_{\mathrm{K}}:$ Indirect CP Violation

ϵ_{K}

UTfit

Talk by Cecilia Tarantino: -I.7 σ Pull

$$
\begin{gathered}
\epsilon_{\mathrm{K}} \simeq \frac{\left\langle(\pi \pi)_{\mathrm{I}=0} \mid \mathrm{K}_{\mathrm{L}}\right\rangle}{\left\langle(\pi \pi)_{\mathrm{I}=0} \mid \mathrm{K}_{\mathrm{S}}\right\rangle} \\
\epsilon_{\mathrm{K}}=e^{i \phi_{\epsilon}} \sin \phi_{\epsilon}\left(\frac{\mathrm{Im}\left(M_{12}^{\mathrm{K}}\right)}{\Re \mathrm{M}_{\mathrm{K}}}+\stackrel{\downarrow}{\Re A_{0}}\right.
\end{gathered}
$$

- In almost all old analysis: $\quad \phi_{\epsilon}=45^{\circ}$ and $\xi=0$
- In reality: $\xi \neq 0 \quad \Phi_{e} \neq 45^{\circ} \quad$ [Nierste; Andriyash; Buras, Guadagnoli]

$$
\left|\epsilon_{\mathrm{K}}^{\mathrm{SM}}\right|=\kappa_{\epsilon}\left|\epsilon_{\mathrm{K}}\right|\left(\phi_{\epsilon}=45^{\circ}, \xi=0\right)
$$

+ similar contribution as $\delta \mathrm{P}_{\mathrm{c}, \mathrm{u}}$ in ϵ_{K}

$$
\mathrm{K}_{\epsilon}=0.94 \pm 0.02 \quad[\text { Buras, Guadagnoli, Isidori `} 10]
$$

Calculation of $M_{12}^{\mathrm{K}}=\left\langle\mathrm{K}^{0}\right| \mathcal{H}_{\mathrm{eff}}^{\Delta \mathrm{S}=2}\left|\overline{\mathrm{~K}}^{0}\right\rangle$

Box diagram with internal u,C.t

$$
\begin{aligned}
& \lambda_{i} \lambda_{j} A\left(x_{i}, x_{j}\right) \\
& \lambda_{i}=V_{i s}^{*} V_{i d}
\end{aligned}
$$

plus GIM:

$$
\lambda_{c}+\lambda_{t}=-\lambda_{u}
$$

Gives three different contributions for

$$
M_{12}^{K}=\left\langle\mathrm{K}^{0}\right| \mathcal{H}_{\mathrm{eff}}^{\Delta \mathrm{S}=2}\left|\overline{\mathrm{~K}}^{0}\right\rangle
$$

Caveat: first only SD

$$
\mathcal{H} \propto\left[\lambda_{\mathrm{t}}^{2} \eta_{\mathrm{t}} S\left(x_{\mathrm{t}}\right)\right.
$$

$+2 \lambda_{c} \lambda_{t} \eta_{c t} S\left(x_{c}, x_{t}\right)$ charm top

$$
\left.+\lambda_{c}^{2} \eta_{c} S\left(x_{c}\right)\right] b(\mu) \tilde{Q} \quad \text { charm }
$$

$$
\tilde{\mathrm{Q}}=\left(\bar{s}_{\mathrm{L}} \gamma_{\mu} \mathrm{d}_{\mathrm{L}}\right)\left(\bar{s}_{\mathrm{L}} \gamma^{\mu} \mathrm{d}_{\mathrm{L}}\right)
$$

Calculation of $M_{12}^{K}=\left\langle\mathrm{K}^{0}\right| \mathcal{H}_{e f f}^{\Delta S=2}\left|\bar{K}^{0}\right\rangle$

$\eta_{c t}:$ Charm Top at LO

- The Leading Order result $\left(\alpha_{s} \log x_{c}\right)^{n} \log x_{c}$
starts with a $\log x_{c}$
- Tree level matching
- One-loop Renormalistion Group Equation

$$
\begin{gathered}
m_{c}^{2} \lambda_{c}\left(\lambda_{c}-\lambda_{u}\right) \log \frac{m_{c}}{M_{w}} \\
\rightarrow m_{c}^{2} \lambda_{c} \lambda_{t} \tilde{Q} \log x_{c}
\end{gathered}
$$

$\eta_{c t}:$ Charm Top beyond LO

- NLO [Herrlich, Nierste]
- NNLO: RGE and matching for $\mathrm{d}=6$ operators RGE:[MG, Haisch `04], Matching: [Bobeth, et. al. `00]
- O(I0000) diagrams were calculated [Brod, Gorbahn ` ${ }^{10]}$

NLO

Long Distance Contribution

ε_{K} the matrix element B_{K} is known precisely
[D.J.Antonio et al `07;Aubin, Laiho, de Water `09]

$$
\begin{gathered}
\int d^{4} x\left\langle K^{0}\right| H^{|\Delta S|=1}(x) H^{|\Delta S|=1}(0)\left|\bar{K}^{0}\right\rangle \\
\text { dispersive } \downarrow_{\text {part }} \overbrace{\text { absorptive }}^{\text {part }}
\end{gathered}
$$

estimated form ϵ^{\prime}
dispersive part estimated in CHPT
no higher dimensional operators and scale cancellation
put everything in: $\kappa_{\epsilon}=0.94 \pm 0.02$
[Buras, Isidori, Guadgnoli `IO]

$\left|\varepsilon_{K}\right|$ and Error Budget

$$
\left|V_{c b}\right|=406(13) \times 10^{-4}
$$

Experiment [PDG `I0]:
$\left|\epsilon_{K}\right| \stackrel{\text { exp. }}{=} 2.228(11) \times 10^{-3}$

Conclusions

High precision in experiment and theory: extraction of fundamental parameters =>
CKM unitarity, lepton universality \& quark masses

Rare kaon decays:
 $K \rightarrow \pi v \bar{v}$: very clean and sensitive to short distances

ε_{k} : CP-violation in kaon mixing

Improvement from lattice => discrepancy with SM slightly lifted by new long distance \& NNLO contribution

