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What can we learn from Kaons?

➡Determination of fundamental parameters

•CKM unitarity 

•Lepton universality

•Mass determination

➡Test suppression of top-dominated FCNCs

•Rare decays

•CP violation

Many more interesting things – only 30 minutes
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Leptonic and Semileptonic

K(π)→ l ν̄l & K→ π l ν̄lObservables:

Talk on measurement of semileptonic form factors: Hita Hochgesand

Lattice input: Talk by Vittorio Lubicz

Here the Vji are the CKM elements determined from the various di → uj processes, having

fixed GF from the muon life time: Gµ = 1.166371(6) × 10−5GeV−2 [2]. εNP parametrizes

possible deviations from the SM induced by dimension-six operators, contributing either

to the muon decay or to the di → uj transitions. By dimensional arguments we expect

εNP ∼ M2
W /Λ2

NP, where ΛNP is the effective scale of new physics. The present accuracy on

|Vus|, which is the dominant source of error in (1.1), allows to set bounds on εNP around

0.1% or equivalently to set bounds on the new physics scale well above 1 TeV.

In this note we report on progress in the verification of the relation (1.1) as well as

on many other tests of the SM which can be performed with leptonic and semileptonic

K decays. The note is organized as follows. The phenomenological framework needed to

describe K!3 and Kµ2 decays within and beyond the SM is briefly reviewed in Section 2.

Section3 is dedicated to the combination of the experimental data. The results and the

interpretation are presented in Section 4.

2. Theoretical framework

2.1 K!3 and K!2 rates within the SM

Within the SM the photon-inclusive K!3 and K!2 decay rates are conveniently decomposed

as [3]
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where CK = 1 (1/2) for the neutral (charged) kaon decays, I!
K(λ+,0) is the phase space

integral that depends on the (experimentally accessible) slopes of the form factors (generi-

cally denoted by λ+, 0), and Sew = 1.0232(3) is the universal short-distance electromagnetic

correction computed in Ref. [4]. The channel-dependent long-distance electromagnetic cor-

rection factors are denoted by δem and δK!
em . In the K!2 case δem = −0.0070(35) [5, 6], while

the four δK!
em are given in Table 1, together with the isospin-breaking corrections due to

mu %= md, denoted by δK
SU(2).

The overall normalization of the K!3 rates depends upon f+(0), the K → π vector

form factor at zero momentum transfer [t = (pK − pπ)2 = 0]. By convention, f+(0) is

defined for the K0 → π− matrix element, in the limit mu = md and αem → 0 (keeping

kaon and pion masses to their physical value). Similarly, fK/fπ is the ratio of the kaon

and pion decay constants defined in the mu = md and αem → 0 limit. The values of these

hadronic parameters, which represent the dominant source of theoretical uncertainty, will

be discussed in Sect. 4.2.

The errors for the K!3 electromagnetic corrections, given in Table 1, have been obtained

within ChPT, estimating higher-order corrections by naive dimensional analysis [7, 8].

Higher-order chiral corrections have a minor impact in the breaking of lepton universality.
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Lattice
[Cirigliano, Giannotti, 
Neufeld `08]

[Marciano `04]

Isospin breaking effects: Flavianet `10
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CKM Unitarity

Vud = 0.97425(22)

and nuclear β decay

[Hardy, Towner `08]

Γ(Kl3)

Γ(Kl2)

Γ(πl2)

[Flavianet `10]

= (0.1± 0.6)× 10−3
∆CKM = |V2

ud| + |V2
us| + |V2

ub| − 1 0.225

0.230

0.970 0.975 Vud

V
u

s Vud (0+! 0+)

Vus (K
l3)

fit with unitarity
fit

Vus
/Vud

(K "2
)
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n
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Kaon WG

f+(0) = 0.9644(49)

fK/f # = 1.189(7)

Figure 8: Results of fits to |Vud|, |Vus|, and |Vus|/|Vud|.

reported in (2.9), and by the lattice QCD results on (fK/fπ)/f+(0). Using this information

we obtain the constraint

rK
H = −0.007 ± 0.012 . (4.8)

To improve this result it would be particularly useful a direct computation of (fK/fπ)/f+(0)

on the lattice (i.e. from the the same set of simulations). Given the advanced status of

staggered results on fK/fπ, it would be interesting to see the effect of a corresponding

analysis f+(0) (which at present is still very preliminary [59]).

4.3 Test of Cabibbo Universality or CKM unitarity

To determine |Vus| and |Vud| we use the value |Vus|×f+(0) = 0.2166(5) reported in Table 8,

the result |Vus|/|Vud|fK/fπ = 0.2760(6) discussed in Sect. 4.1.2, f+(0) = 0.964(5), and

fK/fπ = 1.189(7). From the above we find:

|Vus| = 0.2246 ± 0.0012 [K"3 only] , (4.9)

|Vus|/|Vud| = 0.2321 ± 0.0015 [K"2 only] . (4.10)

These determinations can be used in a fit together with the the recent evaluation of |Vud|
from 0+ → 0+ nuclear beta decays: |Vud|=0.97418± 0.00026 [73]. The global fit gives

|Vud| = 0.97417(26) |Vus| = 0.2253(9) [K"3,"2 + 0+ → 0+] , (4.11)

with χ2/ndf = 0.65/1 (42%). This result does not make use of CKM unitarity. If the

unitarity constraint is included, the fit gives

|Vus| = sin θC = λ = 0.2255(7) [with unitarity] (4.12)

27

4 relations 4 parameters 

|Vus|fK
|Vud|fπ

= 0.2758(5)

|Vus|f+(0) = 0.2163(5)
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CKM Unitarity (Model Independent)

Use SU(2)⨂U(1) invariant operators [Buchmüller-Wyler `06]

O
(3)
lq = (lγµ

σ
a
l)(qγµσ

a
q) O

(3)
ll =

1
2
(lγµ

σ
a
l)(lγµσ

a
l)

Neglect corrections

[Cirigliano et. al. `09]

O

�
MW

ΛNP

�
ΛNP �MW

Constrained from EW precision data [Han, Skiba `05]

(plus         flavour symmetry)U(3)5

Redefine
GF(µ→ e ν ν̄)→ GF(1 − 2ᾱ

(3)
ll )

GF(d→ u e ν̄)→ GF(1 − 2ᾱ
(3)
lq )

Gµ
F

GSL
F
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CKM Unitarity (Model Independent)

[Cirigliano et. al. `09]

from HEP

HEP + CKM

CKM

O
(3)
ll =

1
2
(lγµ

σ
a
l)(lγµσ

a
l)

O
(3)
lq = (lγµ

σ
a
l)(qγµσ

a
q)

VPDG
udi

=
GSL

F

Gµ
F

Vudi
∆CKM = 4

�
ᾱ

(3)
ll − ᾱ

(3)
lq + . . .

�

ΛNP > 10TeV
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Leptonic and Semileptonic
K(π)→ l ν̄l & K→ π l ν̄l

Observables

RKLOE

K = 2.493(25)(19)× 10−5

[NA62 June `10]

RK =
Γ(K→ e ν̄)

Γ(K→ µ ν̄) [Cirigliano, Rosell `07]
RSM

K = 2.477(1)× 10−5

See also[Marciano, Sirlin `93]

Test of lepton universality violation
driven by experimental precision

Experimental talks by Antoni Sergi and Barbara Sciascia

RNA62
K = 2.486(11)(7)× 10−5

[EPJ C64 (2009) 627]
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Lepton Universality in the MSSM

eR, µRντ

sR uL

H+

LF Conserving: ~ lepton mass

RLFV
K =

ΓSM(K→ e νe) + ΓSM(K→ e ντ)

ΓSM(K→ µ νµ)

Lepton Flavour Violation: ∆31
R ∼

g2
2

16π2 δ31
RR

[Masiero, Paradisi, Petronzio `08]

∆rK ∼
m4

K

m4
H+

mτ

me

|∆31
R

|2tan6
β can reach 10−2

But: finetuning of me necessary [Girrbach et. al. `09]

Model independent MLFV and GUT analysis [Isidori et. al. `09]
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Light-Quark Masses from Lattice QCD
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NNNLO [Chetyrkin, et al.]

NNLO

NLO

LO

ω

Prove that good convergence at NLO is no accident
→NNLO: error on mass 2% [Gorbahn, Jäger `10]

RI/SMOMRI/MOM

Find a scheme good for lattice & loops: RI/SMOM [Sturm et. al. `09]

→Connect lattice and M̅S ̅ renormalization scheme:

p p�

q
q2 = −µ2 × ω

p2 = p�2 = −µ2

off-shell 
3-point 

renormalization
condition

RI/SMOM: ω=1

Extract mu,d & ms from               using Lattice QCD
Mπ

fπ
&
MK

Mπ
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Rare Kaon Decays

b→ s :
|V∗

tbVts| ∝ λ2
b→ d :

|V∗
tbVtd| ∝ λ3

s→ d :
|V∗

tsVtd| ∝ λ5

FCNCs which are dominated by top-quark loops:

CKM suppression: enhanced sensitivity to NP

how can we suppress the 
light quark contribution?

V ∗
tsVtd + V ∗

csVcd = −V ∗
usVud

λ λλ5

λ
m2

c

M2
W

Quadratic GIM:

Im(V ∗
csVcd)CP violation:

K+ → π+νν̄ vs. KL → π0νν̄

[Straub@CKM`10]
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GIMnastics
Quadratic GIM suppresses light quark  contribution

m2
c − m2

u

m2
cG2

F log
mc

Mws

d µ

µ

u − c
µ

µ

W
Z

u − c

d

s NNLO
[MG, Haisch `07]

 No quadratic suppression for KL → γγ

s

d

GF log
ΛQCD

mc
s

d γ

γ

W c − u

α

4π
×KL → γγ  also contributes to: KL → µ+µ−
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No couplings to    s: 

• Dominant Operator:

W

s

d

sν

ν ν

Z

u, c, ts dd

ν ν ν

Z

W W

W We, µ, τ
u, c, t u, c, t

u, c, t

K→ π ν ν̄

Qν = (s̄LγµdL)(ν̄LγµνL)

λ
m2

c

M2
W

ln
MW

mc

�

i

V∗
isVidF(xi) = V∗

tsVtd(F(xt) − F(xu)) + V∗
csVcd(F(xc) − F(xu))

λ5 m2
t

M2
W

λ
Λ2

M2
W

Quadratic GIM:

γ
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               :Effective Hamiltonian 

CP violating

W

s

d

sν

ν ν

Z

u, c, ts dd

ν ν ν

Z

W W

W We, µ, τ
u, c, t u, c, t

u, c, t

KL → π0 ν̄ ν

Br(KL → π0ν̄ν) = κL

�
Im(V∗

tsVtd)

λ5 X(xt)

�2

Only top quark contributes: 

Use isospin symmetry and normalise to: K+ → π0e+ν

Heff =
4GF√

2
α V

∗
tsVtd

2π sin2
ΘW

X(xt)Qν

including 
NLO EW

[Bord, Gorbahn, Stamou `10]
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                : Theoretical Status 
Matrix element extracted 
from     decays.           

[Mescia, Smith ´07; Bijnens, Ghorbani ´07]   

Kl3 N
3
2 LO χPT

KL → π0νν̄

< 6.7× 10−8 [E391a ´08]

      : Full NLO 
electroweak corrections
[Brod, Gorbahn, Stamou ´10]

X(xt)

Reduce theory uncertainty 
by factor of 2

Xt
8 %

kappa
2 %CKM

84 %

Mt
6 %

BrKL = 2.57(37)(4)× 10−11

Experiment:
=> K0T0
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                 and  K+ → π+ ν̄ ν KL → π0 ν̄ ν

• CP conserving: Top & charm contribute
Different  from KL → π0 ν̄ ν

Br
�
K+ → π+νν̄(γ)

�
= κ+(1 + ∆EM)

×

�����
V∗

tsVtdXt(m2
t) + λ4ReV∗

csVcd

�
Pc(m2

c) + δPc,u
�

λ5

�����

2

.

suppression lifted by
m2

c

M2
W

log(
mc

MW
)

1
λ4

• Only      : Quadratic GIM & Isospin symmetry
• Top quark contribution like in 

Qν

Like in KL → π0 ν̄ ν

KL → π0 ν̄ ν
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                charm contribution K+ → π+ ν̄ ν

Pc

ν

d

ν

c(u)

s

d ν

c(u) "

s ν

Figure 1: One-loop diagrams corresponding to the T-products in Eqs. (2)–(4).

the other hand, we differ from these works in the last step, namely the removal of the
charm as dynamical degrees of freedom. In this case we proceed as in Ref. [9], matching
the operator product expansion of the T-products into an effective theory which includes
also dimension-8 operators. The structure of the local terms, for µIR

<
∼ mc, takes the form

of the following effective Hamiltonian density

H(6+8)
eff (µIR) =

GF√
2

α

2π sin2 θW
λc

∑

l=e,µ,τ

[

X l
c(xc)Q

(6)
l +

1

M2
W

∑

i

C l
i(µIR)Q(8)

il

]

. (9)

Neglecting neutrino masses, the only Q(8)
il with non-vanishing coefficients to lowest order

in αs(mc) are

Q(8)
1l = s̄γµ(1 − γ5)d ∂2 [ν̄lγµ(1 − γ5)νl] ,

Q(8)
2l = (s̄

←−
Dα)γµ(1 − γ5)(

−→
Dαd) ν̄lγµ(1 − γ5)νl ,

Q(8)
3l = (s̄

←−
Dα)γµ(1 − γ5)d

[

ν̄l(
←−
∂α −

−→
∂α)γµ(1 − γ5)νl

]

. (10)

The operator Q(8)
1l arises by the neutral-current coupling (left diagram in Figure 1), while

Q(8)
2l and Q(8)

3l are generated by the charged-current coupling (right diagram in Figure 1).

The operator Q(8)
3l , which has been considered first in Ref. [8], is the only term which can

induce a CP-conserving contribution to the K2 → π0νlν̄l transition. In agreement with
the results of Ref. [8, 9], we find

C l
1(µIR) =

1

12

(

1 −
4

3
sin2 θW

)

log
(

m2
c/µ

2
IR

)

[3C1(µc) + C2(µc)]

Ce,µ
2 (µIR) =

1

2
log

(

m2
c/µ

2
IR

)

CB(µc) (11)

Cτ
2 (µIR) = −

1

4
f

(

m2
c/m

2
τ

)

CB(µc)

C l
3(µIR) = −C l

2(µIR)

4

Pc

µc[GeV]1 2
.35

.39

.36 NNLO (QCD)

NLO (EW)
LO (EW)

• Resum               in 

        at NNLO: ±2.5% (theory)
[Buras, Gorbahn, Haisch, Nierste ´06]

log
mc

MW
Pc

NLO EW [Brod, Gorbahn`08]

2 The O(G2
F ) four-fermion effective Hamiltonian

Since we are interested only in contributions generated by up- and charm-quark loops
(namely we neglect the corrections of O(ΛQCD/m2

t )), we can set Vtd = 0. In this limit,
CKM unitarity allows to express all the relevant contributions in terms of one independent
CKM combination: λc = V ∗

csVcd = −V ∗
usVud. As discussed in Ref. [5, 9], the central point

for the construction of the low-energy effective theory is the expansion in terms of local
operators of the following T-products,2

OZ
1 = −i

∫

d4x T [Qcc
1 (x) Qccνν

Z (0) − Quu
1 (x) Quu νν

Z (0)] , (2)

OZ
2 = −i

∫

d4x T [Qcc
2 (x) Qcc νν

Z (0) − Quu
2 (x) Quu νν

Z (0)] , (3)

OB
l = −i

∫

d4x T
[

Qcl(x) Qlc(0) − Qul(x) Qlu(0)
]

, (4)

whose leading term is given by

Q(6)
l = s̄γµ(1 − γ5)d ν̄lγµ(1 − γ5)νl . (5)

Here

Qqq
1 = s̄iγ

µ(1 − γ5)qj q̄jγµ(1 − γ5)di ,

Qqq
2 = s̄iγ

µ(1 − γ5)qi q̄jγµ(1 − γ5)dj , (6)

denote the leading ∆S = 1 four-quark operators (q = u, c),

Qqqνν
Z = q̄kγ

µ

[

(1 − γ5) −
8

3
sin2 θW

]

qk ν̄lγµ(1 − γ5)νl (7)

is the effective neutral-current coupling induced by the integration of the Z boson, and

Qql
3 = s̄γµ(1 − γ5)q ν̄lγµ(1 − γ5)l

Qlq
4 = l̄γµ(1 − γ5)νl q̄γµ(1 − γ5)d (8)

are the effective charged-current couplings induced by integration of the W± bosons. Note
that, even if we are interested in dimension-8 operators, we work at O(G2

F ) and we can
safely use a point-like propagator in the case of both Z and W± bosons. The T-products
in Eqs. (2)–(4) correspond to the diagrams in Figure 1.

The first two steps necessary for the construction of the effective theory, namely the
determination of the initial conditions at µ = MW of OZ

1,2, OB
l and Q(6), and the renor-

malization group evolution down to lower scales, proceeds exactly as in Refs. [5]-[7]. On
2 For a complete discussion, we refer to Ref. [5]. Note that, since we are interested also in the

subleading terms arising by the expansion of the T-products, we include both left-handed and vector
components of Qqqνν

Z in Eq. (7). The latter has been ignored in [5] since it does not contribute to the
leading dimension six operator.
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2 For a complete discussion, we refer to Ref. [5]. Note that, since we are interested also in the

subleading terms arising by the expansion of the T-products, we include both left-handed and vector
components of Qqqνν

Z in Eq. (7). The latter has been ignored in [5] since it does not contribute to the
leading dimension six operator.

3

c̄γµγ5c ν̄γµ(1− γ5)ν
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Long Distance Contribution

ν

d

ν

c(u)

s

d ν

c(u) "

s ν

Figure 1: One-loop diagrams corresponding to the T-products in Eqs. (2)–(4).

the other hand, we differ from these works in the last step, namely the removal of the
charm as dynamical degrees of freedom. In this case we proceed as in Ref. [9], matching
the operator product expansion of the T-products into an effective theory which includes
also dimension-8 operators. The structure of the local terms, for µIR

<
∼ mc, takes the form

of the following effective Hamiltonian density

H(6+8)
eff (µIR) =

GF√
2

α

2π sin2 θW
λc

∑

l=e,µ,τ

[

X l
c(xc)Q

(6)
l +

1

M2
W

∑

i

C l
i(µIR)Q(8)

il

]

. (9)

Neglecting neutrino masses, the only Q(8)
il with non-vanishing coefficients to lowest order

in αs(mc) are

Q(8)
1l = s̄γµ(1 − γ5)d ∂2 [ν̄lγµ(1 − γ5)νl] ,

Q(8)
2l = (s̄

←−
Dα)γµ(1 − γ5)(

−→
Dαd) ν̄lγµ(1 − γ5)νl ,

Q(8)
3l = (s̄

←−
Dα)γµ(1 − γ5)d

[

ν̄l(
←−
∂α −

−→
∂α)γµ(1 − γ5)νl

]

. (10)

The operator Q(8)
1l arises by the neutral-current coupling (left diagram in Figure 1), while

Q(8)
2l and Q(8)

3l are generated by the charged-current coupling (right diagram in Figure 1).

The operator Q(8)
3l , which has been considered first in Ref. [8], is the only term which can

induce a CP-conserving contribution to the K2 → π0νlν̄l transition. In agreement with
the results of Ref. [8, 9], we find

C l
1(µIR) =

1

12

(

1 −
4

3
sin2 θW

)

log
(

m2
c/µ

2
IR

)

[3C1(µc) + C2(µc)]

Ce,µ
2 (µIR) =

1

2
log

(

m2
c/µ

2
IR

)

CB(µc) (11)

Cτ
2 (µIR) = −

1

4
f

(

m2
c/m

2
τ

)

CB(µc)

C l
3(µIR) = −C l

2(µIR)

4

No GIM below the charm quark mass scale

higher dimensional operatorsq2/m2
c

One loop CHPT calculation approximately 
cancels this scale dependence [Isidori, Mescia, Smith `05]

UV scale dependent

Also: box-type diagrams considered 
(from two semileptonic operator insertions)

cancelation is more complicated

δPc,u = 0.04± 0.02 [Isidori, Mescia, Smith `05]
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One Current & One Operator

very small non-perturbative contributions (estimated to be below 1% at the amplitude
level in the K+ → π+νν̄ case and even smaller in all the other channels), which can be
reliably estimated within CHPT [9, 16]. Thus the main problem are the contractions of
Qu,c

1,2 with a neutral current, as outlined in eq. (1).
So far, this problem has been addressed with the following two-step procedure: i)

integrating out the charm as dynamical degree of freedom; ii) constructing the chiral real-
ization of the corresponding effective Hamiltonian with light quarks only. This procedure
suffers from two sources of theoretical errors: slow convergence of perturbation theory be-
cause of the low renormalization scale of the effective Hamiltonian (µ < mc); uncertainties
associated to the new low-energy couplings appearing in the effective theory. Both these
sources of uncertainties are naturally reduced in the lattice approach, where the effective
Hamiltonian is renormalized above the charm scale and the T -products are evaluated in
full QCD.

We now discuss separately electromagnetic and neutrino amplitudes in more detail.

2.1 K → π#+#−

The main non-perturbative correlators relevant for these decays are those with the elec-
tromagnetic current. In particular, the relevant T -product in Minkowski space is [7, 8]

(

T j
i

)µ

em
(q2) = −i

∫

d4x e−i q·x 〈πj(p)|T {Jµ
em(x) [Qu

i (0) − Qc
i(0)]} |Kj(k)〉 , (11)

Jµ
em =

2

3

∑

q=u,c

q̄γµq − 1

3

∑

q=d,s

q̄γµq (12)

for i = 1, 2 and j = +, 0. Thanks to gauge invariance we can write

(

T j
i

)µ

em
(q2) =

wj
i (q

2)

(4π)2

[

q2(k + p)µ − (m2
k − m2

π)qµ
]

. (13)

The normalization of (13) is such that the O(1) scale-independent low-energy couplings
a+,0 defined in [8] can be expressed as

aj =
1√
2
V ∗

usVud

[

C1w
j
1(0) + C2w

j
2(0) +

2Nj

sin2 θW
f+(0)C7V

]

. (14)

where f+ is the K → π vector form factor and {N+, N0} = {1, 2−1/2} [3]. To a good
approximation, the decay rates of the CP-conserving transitions K+ → π+#+#− and
KS → π0#+#− are proportional to the square of these effective couplings [8]:

B(K+ → π+e+e−) ≈ 6.6 a2
+ × 10−7 , B(KS → π0e+e−) ≈ 10.4 a2

0 × 10−9 . (15)

At present, we are not able to predict a+,0 with sufficient accuracy: we simply fit their O(1)
values from the measured rates of the corresponding decay modes (an updated numerical
analysis can be found in [17]). Being completely dominated by long distance contributions,

4

s

ū

u, c

d

Z0, γ

Figure 1: One-loop topology which can originate power-like singularities to the Green
function (21) for x → 0. The dotted line denotes the generic insertion of Qu,c

i , with
possible Fierz re-arrangements.

The additional problem which arises in this case is the possibility that the Green
function itself diverges because of the short distance behavior when x → 0. By dimen-
sional arguments, this divergence can at most be quadratic. At fixed lattice spacing a,
this would imply potential contributions to the Green function of O(1/a2). Fortunately
this never happens, since the strongest divergence associated to the diagram in figure 1
is independent of the quark masses and is canceled by the GIM mechanism. However,
this cancellation does not guarantee the absence of linear divergences, which are naturally
present when using lattice actions which break explicitly chiral invariance.

3.1 The electromagnetic current

Even if the chirality of the fermion action is explicitly broken, we are still able to define
a conserved vector current on the lattice, which we can identify with the electromagnetic
one. For example, with Wilson fermions we have

Ĵµ
V =

1

2

[

q̄(x + µ)Uµ†(x)(r + γµ)q(x) − q̄(x)Uµ(x)(r − γµ)q(x + µ)
]

, (23)

where Uµ is the link variable. With a conserved current, gauge invariance is strong
enough to protect the Green functions from the appearance of both quadratic and linear
divergences. This remains true even when the Wick contractions correspond to a vacuum
polarization diagram of the type in figure 1, where only one of the two currents is the lattice
conserved one, and the other is a local vector current originating from the weak four-
fermion operator. We have verified this argument by an explicit perturbative calculation
using Wilson, Clover and twisted mass fermions. Since the results of this calculation
(more precisely of the subdiagram in figure 2) could be useful for other applications, we
give them below for the Wilson and Clover cases.

7

[Isidori, Martinelli, Turchetti `06]

Current and operator insertion 

divergence mass independent: 
cancelled by GIM

O

�
1

a2

�

O

�
1

a

�
appear→maximally 
twisted fermions

also: no semileptonic operators discussed
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               Error Budget K+ → π+ ν̄ ν

BrK+ = (1.73+1.15
−1.05)× 10−10

Experiment [E787, E949 ´08] 

Theory error budget

kappa
2 %

Xt
7 %

Pc
6 %

delta Pcu
14 %

CKM
53 %

Parametric
18 %

BK+ = 0.822(69)(29)× 10−10

Talk by Giuseppe Ruggiero
on NA62 => 10%

Uncertainty reduced by a factor 7 by 
(N)NLO χPT calculation[Mescia, Smith ´07]

Uncertainty reduced by a factor 2 by 
NLO e.w. calculation[Brod, Gorbahn, Stamou ´10]
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                : Three ContributionsKL → π0l+l−

KL

π0

γ

γ

#+

#−

s

d

!+

!−

u, c, t

d

s

u, c, t

u, c, t

γ, Z

W

W

Wν

!+

!−

KL KS

π0

"−

"+

γ

εK

CP Conserving Indirect CP Violating

Direct CP Violating

Q7V = (s̄LγµdL)(̄lγµl)

Q7A = (s̄LγµdL)(̄lγµγ5l)

→ 1−−

→ 1++, 0−+

Wilson Coefficients: 
at NLO [Buchalla et al. ´96]

y7V , y7A
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                : Three ContributionsKL → π0l+l−

KL

π0

γ

γ

#+

#−

KL KS

π0

"−

"+

γ

εK

Counterterm                       
[D´Ambrosio et. al. ´98, Mescia et. al. ´06]

For       interference with 
[Buchalla et. al. ´03, Friot et al. ´04]

Estimate from
[Isidori et. al. ´04]

|aS| = 1.2± 0.2

1−−
Q7V

Br(KL → π0�+�−) =
�
C�

dir ± C�
int|aS| + C�

mix|aS|2 + C�
γγ

�
× 10−12

� C�
dir C�

int C�
mix C�

γγ

e (4.62± 0.24)(y2
V + y2

A) (11.3± 0.3)yV 14.5± 0.5 ≈ 0
µ (1.09± 0.05)(y2

V + 2.32y2
A) (2.63± 0.06)yV 3.36± 0.20 5.2± 1.6

KL → π0γγ

from
KS → π0l+l−
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                : Improvements	



• Measure both               and             : [Mescia et. al. ´06]

Disentangle short distance contribution (             )

• Dominant theory error in as: 
Forward backward asymmetry.  [Mescia, Smith, Trine ´06]

Better measurement of                       

KL → π0l+l−

y7V , y7A

Bre+e− Brµ+µ−

KS → π0l+l−

[Mescia et. al. ´06] 

×1011

1011×

[KTEV ´04] [KTEV ´00]
Brµ+µ−Bre+e−

< 28× 10−11 < 38× 10−11

Lattice:                contributionK → π(γ/Z)

similar to              calculation K→ π ν ν̄

Talk on radiative decays by Monica Pepe
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     :Indirect CP Violation

• In almost all old analysis:

• In reality:  

φ� = 45◦ ξ = 0

ξ �= 0 φ� �= 45◦
and

[Buras, Guadagnoli, Isidori `10]

|�SM
K | = κ�|�K|(φ� = 45◦, ξ = 0)

+ similar contribution as        in  δPc,u �K

κ� = 0.94± 0.02

�K � �(ππ)I=0|KL�
�(ππ)I=0|KS�

�K = eiφ� sin φ�

�
Im(MK

12)

∆MK
+ ξ

�

�A0

�A0

[Nierste;  Andriyash; Buras, Guadagnoli]

�K

�K

UTfit

Talk by Cecilia Tarantino: -1.7 σ Pull 
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s

d

d

s

u, c, tu, c, t

W±

W±

Calculation of 

MK
12 = �K0

|H
∆S=2
eff |K̄0�

λiλjA(xi, xj)

λi = V∗
isVid

λc + λt = −λu

MK
12 = �K0

|H
∆S=2
eff |K̄0�

plus GIM:

Gives three different
contributions for

Box diagram
with internal u,c,t

Q̃ = (s̄LγµdL)(s̄LγµdL)

H ∝
�
λ2

tηtS(xt)

+2λcλtηctS(xc, xt)

top

charm top

charm+λ2
cηcS(xc)

�
b(µ)Q̃

Caveat: first only SD
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s

d

d

s

cc
W±

W±

s

d

d

s

ct
W±

W±

s

d

d

s

tt
W±

W±

Calculation of MK
12 = �K0

|H
∆S=2
eff |K̄0�

top charm top charm
log xt log xc (log xc)0

hard GIM
LO

NLO
(αs log xc)n (αs log xc)n(αs log xc)n log xc

(αs log xc)n
αs(αs log xc)n αs(αs log xc)n

75% 37% -12%

16% 17.7%1.8%

�K

scale
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      :Charm Top at LOηct
• The Leading Order result

s

d

d

s

c, u

c, u

s

c, u

d

c, u

s

c, u

d

c, u

W±

• Tree level matching

• One-loop Renormalistion 
Group Equation

(αs log xc)n log xc

starts with a log xc

m2
cλc

(λc − λu)

m2
cλc(λc − λu) log

mc

MW

→ m2
cλcλtQ̃ log xc
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      :Charm Top beyond LOηct

• NLO [Herrlich, Nierste] 

• NNLO: RGE and matching 
for d=6 operators RGE: [MG, 
Haisch `04], Matching: [Bobeth, et. al. `00]

• O(10000) diagrams were 
calculated [Brod, Gorbahn `10]

s

d

d

s

u, c, tu, c, t

W±

W±

s

d

d

s

c, u

c, u

s

d

d

s

c, u

c, u

NLO
NNLO

 0.2

 0.3

 0.4

 0.5

 0.6

 1  1.25  1.5  1.75  2

ct

!c [GeV][Brod, Gorbahn `10]
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s

d

d

s

c, u

c, u

Long Distance Contribution
εK the matrix element BK is known precisely

�
d
4
x �K0|H |∆S|=1(x)H |∆S|=1(0) |K̄0�

�K = eiφ� sin φ�

�
Im(MK

12)

∆MK
+ ξ

�

absorptive
part

dispersive
part

estimated form��
dispersive part estimated in CHPT

κ� = 0.94± 0.02put everything in: [Buras, Isidori, Guadgnoli `10]

no higher dimensional operators and scale cancellation

[D.J.Antonio et al `07; Aubin, Laiho, de Water `09]
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|εK| and Error Budget

eta_ct
11 %

eta_tt
2 %

eta_cc
6 %

kappa
6 %

Vcb
33 %

parametric
10 %

sin2beta
10 %

xi_s
11 %

B_K
10 %

using

Experiment [PDG `10]:
|Vcb| = 406(13)× 10−4

New input [PDG `10]

ηct = 0.496± 0.047

|�K | = 1.90(26)× 10−3

|�K | exp.= 2.228(11)× 10−3
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 Conclusions 

High precision in experiment and theory:
extraction of fundamental parameters =>

CKM unitarity, lepton universality & quark masses 

K→ π ν ν̄ : very clean and sensitive to short distances
Rare kaon decays:

εK: CP-violation in kaon mixing

Improvement from lattice => discrepancy with SM 

slightly lifted by new long distance & NNLO contribution

30


