

1

Semileptonic decays at CLEO-c HQL10, Frascati, Oct. 2010

Giovanni Bonvicini

$\sqrt{s}=3770$ MeV: exclusive $e^+e^-\rightarrow D\overline{D}$, 818 pb⁻¹ (5.4X10⁶ DD events, 6.6X10⁵ D⁰ tags, 4.8X10⁵ D⁺ tags)

$\sqrt{s}=3770$ MeV: exclusive e⁺e⁻ \rightarrow DD contd.

- 2 kinematic tag constraints (E_{beam}, M_D)
- B=N_{sig}/(N_{tag}ε), luminosity info not used.
- Neutrino resolution characterized as either U=E_{miss}-p_{miss} or MM²=E_{miss}²-p_{miss}²

MM2 distribution. Solid dots: data Solid line: MC, dashed line: background

D→ (π,K)eυ, PRD 80: 32005, 2009

U signal from $D^0 \rightarrow K^-ev$ channel, 10 q² bins (points=DATA, histogram=MC)

D \rightarrow (π ,K)ev, comparison with high precision Lattice QCD (arXiv 1008.4562)

Extraction of CKM elements, assuming $f_+(q^2=0)=0.747\pm0.11\pm0.15$

 $|V_{cd}| = 0.234 \pm 0.007 \pm 0.002 \pm 0.025$

 $|V_{cs}| = 0.985 \pm 0.009 \pm 0.006 \pm 0.103,$

D⁺→Kπlυ PRD 81: 112001, 2010

MM2 signal distribution

 $P \rightarrow V$ transitions much more complex due to internal angular variables.

$$D^{+} \rightarrow K\pi lv \ contd.$$

$$\int |\mathcal{A}|^{2} d\chi = \frac{q^{2} - m_{\ell}^{2}}{8} \begin{cases} \frac{((1 + \cos\theta_{\ell})\sin\theta_{V})^{2}|H_{-}(q^{2})|^{2}|\beta|^{2}}{+((1 - \cos\theta_{\ell})\sin\theta_{V})^{2}|H_{-}(q^{2})|^{2}|\beta|^{2}} \\ +(2\sin\theta_{\ell}\cos\theta_{V})^{2}|H_{0}(q^{2})|^{2}|\beta|^{2}} \\ +8\sin^{2}\theta_{\ell}\cos\theta_{V}H_{0}(q^{2})h_{0}(q^{2})\operatorname{Re}\{Ae^{-i\delta\beta}\}} \end{cases}$$

$$+ \frac{|\beta|^{2}}{8}(q^{2} - m_{\ell}^{2})\frac{m_{\ell}^{2}}{q^{2}} \left\{ (\sin\theta_{\ell}\sin\theta_{V})^{2}|H_{+}(q^{2})|^{2} + (\sin\theta_{\ell}\sin\theta_{V})^{2}|H_{-}(q^{2})|^{2}} \\ +(2\cos\theta_{\ell}\cos\theta_{V})^{2}|H_{0}(q^{2})|^{2}} \\ +(2\cos\theta_{V})^{2}|H_{\ell}(q^{2})|^{2} + 8\cos\theta_{\ell}\cos^{2}\theta_{V}H_{0}(q^{2})H_{\ell}(q^{2})} \end{cases} \right\}$$

$$+ \frac{|\beta|^{2}}{9}(q^{2} - m_{\ell}^{2})\frac{m_{\ell}^{2}}{q^{2}} \left\{ (\sin\theta_{\ell}\sin\theta_{V})^{2}|H_{+}(q^{2})|^{2} + (\sin\theta_{\ell}\sin\theta_{V})^{2}|H_{-}(q^{2})|^{2}} \\ +(2\cos\theta_{V})^{2}|H_{\ell}(q^{2})|^{2} + 8\cos\theta_{\ell}\cos^{2}\theta_{V}H_{0}(q^{2})H_{\ell}(q^{2}) \right\}$$

$$+ B(D - K^{*0}w) = (5.2\pm0.07\pm0.13)\%$$

$$+ B(D - K^{*0}w) = (5.2\pm0.07\pm0.14)\%$$

$$+ B_{\ell}[q^{2}] \ measurements \ inconsistent with LQCD models.$$

$$+ M_{\ell}[q^{2}] \ measurements \ inconsistent with LQCD models.$$

$$+ No \ d - or \ f - wave \ evidence$$

$$+ M_{\ell}[q^{2}] \ measurements \ inconsistent \ models.$$

$$+ No \ d - or \ f - wave \ evidence$$

$D \rightarrow \rho e v$, preliminary.

$$\frac{d\Gamma(B\to\rho l^+\nu)/dq^2}{d\Gamma(B\to K^*l^+l^-)/dq^2}\sim \frac{|V_{\rm ub}|^2}{|V_{\rm cb}|^2},$$

◆ B(D⁰→ρev)= (0.176±0.011±0.010)% ◆ B(D⁺→ρev)= (0.213±0.013±0.011)% ◆ R_v=V(0)/A₀(0)=1.48±0.15±0.03 ◆ R₂=A₂(0)/A₁(0)=0.83±0.11±0.04

$D^+ \rightarrow (\eta, \eta', \phi) ev$, preliminary

U distribution, Tagged analysis

 $\begin{aligned} \mathcal{B}(D^+ \to \eta e^+ \nu_e) &= (11.4 \pm 0.9 \pm 0.4) \times 10^{-4}, \\ \mathcal{B}(D^+ \to \eta' e^+ \nu_e) &= (2.16 \pm 0.53 \pm 0.07) \times 10^{-4}, \\ \mathcal{B}(D^+ \to \phi e^+ \nu_e) &< 0.9 \times 10^{-4} \quad (90\% \text{ C.L.}) \end{aligned}$

M_{BC}, General Reconstruction analysis

$D^+ \rightarrow \eta e v q^2$ distribution, preliminary

$\sqrt{s}=4170$ MeV: exclusive $e^+e^- \rightarrow D_s D_s \gamma$, 586 pb⁻¹

- $6X10^5$ events, $8X10^4$ D_s tags, 4.5X10⁴ (D_s γ) tags
- Maximal D_s cross section dominated (95%) by excl. reaction $e^+e^- \rightarrow D_s D_s^*$
- $B(D_s^* \rightarrow D_s \gamma) = 95\%$
- 2 kinematic tag constraints, M_{Ds} and recoil ($D_s\gamma$) mass
- More backgrounds due to D production, more neutral decays and annihilation tags (e.g., $D_s \rightarrow 3\pi, D_s \rightarrow \eta\rho$)

$D_s \rightarrow f_0 ev$, PRD 80: 52009, 2009

Simultaneous analysis for $(\pi^+\pi^-e\upsilon)$ (a) and $(K^+K^-e\upsilon)$ (b)

D_s →ωeυ,prelim. (B<0.23% 95% C.L.)

Inclusive semileptonic D⁺, D⁰, D_s, PRD 81: 112001, 2010

 $\mathcal{B}(D^0 \to X e^+ \nu_e) = (6.46 \pm 0.09 \pm 0.11)\%,$ $\mathcal{B}(D^+ \to X e^+ \nu_e) = (16.13 \pm 0.10 \pm 0.29)\%,$

 $\frac{\Gamma(D^+ \to X e^+ \nu_e)}{\Gamma(D^0 \to X e^+ \nu_e)} = 0.985 \pm 0.015 \pm 0.024$

 $\mathcal{B}(D_s^+ \to X e^+ \nu_e) = (6.52 \pm 0.39 \pm 0.15)\%,$

$$\frac{\Gamma(D_s^+ \to X e^+ \nu_e)}{\Gamma(D^0 \to X e^+ \nu_e)} = 0.828 \pm 0.051 \pm 0.025.$$

Summary

- Numerous precision and new measurements of charmed meson decays, due to excellent neutral and electron detection and exclusive reactions
- High quality (2.5%) comparisons with High Precision Lattice QCD
- High quality form factor, and CKM matrix elements, measurements, for $D^+ \rightarrow (K, K^*, \pi, \rho) e \upsilon$.
- First observation of $D^+ \rightarrow \eta$ 'ev and $D_s \rightarrow f_0 ev$
- First measurement of form factor for $D^+ \rightarrow \eta e \upsilon$