Measurement of $BR(K \rightarrow e\nu_e)/BR(K \rightarrow \mu\nu_\mu)$ in NA62

Antonino Sergi

CERN

On behalf of NA62 collaboration

HQL10, October 2010, LNF - Frascati

R_K - LFV test

[PRL 99 (2007), 231801]

R_K - LFV test

- $R_K = \frac{\Gamma(K \to e\nu_e)}{\Gamma(K \to \mu\nu_\mu)}$
- $BR(K \to e\nu) \approx O(10^{-5})$ $BR(K \to \mu\nu) \approx 63\%$
- In the SM:
 - $R_K = (2.477 \pm 0.001)10^{-5}$
 - Hadronic uncertainties cancel in the ratio
 - Helicity suppression $\approx 10^{-5}$
 - Radiative correction (few %) due to
 - $K \rightarrow e \nu_e \gamma (IB),$ by definition included into R_K

[PRL 99 (2007), 231801]

$\overline{R_K}$ - LFV test

- $R_K = \frac{\Gamma(K \to e\nu_e)}{\Gamma(K \to \mu\nu_\mu)}$
- $BR(K \to e\nu) \approx O(10^{-5})$ $BR(K \to \mu\nu) \approx 63\%$
- In the SM:
 - $R_K = (2.477 \pm 0.001)10^{-5}$
 - Hadronic uncertainties cancel in the ratio
 - Helicity suppression $\approx 10^{-5}$
 - Radiative correction (few %) due to $K \to e \nu_e \gamma(IB), \, {\rm by \ definition \ included \ into \ } R_K$

[PRL 99 (2007), 231801]

- Experimentally:
 - $R_K = (2.45 \pm 0.11) 10^{-5}$ (PDG 2008, '70s measurements) $\delta R_K/R_K \approx 4.5\%$
 - $R_K = (2.493 \pm 0.031)10^{-5}$ (arXiv:0907:3594, KLOE) $\delta R_K/R_K \approx 1.3\%$
 - It's worth to improve it because of its small and well predicted value

R_K in case of New Physics (MSSM)

- Expected effects within $\delta R_K/R_K \approx 10^{-4} 10^{-2}$
- A specific case:

$$\begin{split} R_K^{MSSM} &= R_K^{SM} \left[1 + \left(\frac{m_K}{m_H} \right)^4 \left(\frac{m_\tau}{m_e} \right)^2 |\Delta_{13}|^2 \tan^6 \beta \right] \\ \text{with } m_H &= 500 \text{GeV} / c^2, |\Delta_{13}| = 5 \times 10^{-4} \text{ e} \tan \beta = 40 \\ R_K^{MSSM} &= R_K^{SM} (1 + 0.013) \text{ [PRD 74 (2006) 011701, JHEP 0811 (2008) 042]} \end{split}$$

R_K in case of New Physics (MSSM)

- Expected effects within $\delta R_K/R_K \approx 10^{-4} 10^{-2}$
- A specific case:

$$\begin{split} R_K^{MSSM} &= R_K^{SM} \left[1 + \left(\frac{m_K}{m_H} \right)^4 \left(\frac{m_\tau}{m_e} \right)^2 |\Delta_{13}|^2 \tan^6 \beta \right] \\ \text{with } m_H &= 500 \text{GeV} / c^2, |\Delta_{13}| = 5 \times 10^{-4} \text{ e} \tan \beta = 40 \\ R_K^{MSSM} &= R_K^{SM} (1 + 0.013) \text{ [PRD 74 (2006) 011701, JHEP 0811 (2008) 042]} \end{split}$$

Antonino Sergi Measurement of $BR(K \rightarrow e\nu_e)/BR(K \rightarrow \mu\nu_{\mu})$ in NA62

R_K in case of New Physics (MSSM)

- Expected effects within $\delta R_K/R_K\approx 10^{-4}-10^{-2}$
- A specific case:

$$\begin{split} R_K^{MSSM} &= R_K^{SM} \left[1 + \left(\frac{m_K}{m_H} \right)^4 \left(\frac{m_\tau}{m_e} \right)^2 |\Delta_{13}|^2 \tan^6 \beta \right] \\ \text{with } m_H &= 500 \text{GeV} / c^2, |\Delta_{13}| = 5 \times 10^{-4} \text{ e} \tan \beta = 40 \\ R_K^{MSSM} &= R_K^{SM} (1 + 0.013) \text{ [PRD 74 (2006) 011701, JHEP 0811 (2008) 042]} \end{split}$$

 π and B have the same effect, but:

- in R_π it's suppressed by $(m_\pi/m_K)^4 \approx 10^{-3}$
- $B \to e\nu_e$ is out of reach and $\frac{B \to \mu\nu_\mu}{B \to \tau\nu_\tau}$ has $\approx 50\%$ enhancement

- Goal: $\delta R_K/R_K \approx 0.5\%$
- Dedicated strategy for K_{e2} ($K \rightarrow e\nu_e$)
- High statistics K_{e2} (150K)
- Backgrounds < 10%

• Goal: $\delta R_K/R_K \approx 0.5\%$

- Goal: $\delta R_K/R_K \approx 0.5\%$
- Dedicated strategy for K_{e2} ($K \rightarrow e\nu_e$)
- High statistics K_{e2} (150K)
- Backgrounds < 10%
- Data taking in 2007-2008:
 - 4 months in 2007: $\approx 5\times 10^{10}K$ decays, 300TB data (90TB recorded)
 - 2 weeks 2008: control samples for systematics

- Goal: $\delta R_K/R_K \approx 0.5\%$
- Dedicated strategy for K_{e2} $(K \rightarrow e\nu_e)$
- High statistics K_{e2} (150K)
- Backgrounds < 10%
- Data taking in 2007-2008:
 - 4 months in 2007: $\approx 5\times 10^{10}K$ decays, 300TB data (90TB recorded)
 - 2 weeks 2008: control samples for systematics
- Some detector features:
 - Spectrometer (4 DCHs): 4 views/DCH

$$\left(\frac{\sigma_p}{p} = (0.47\% + 0.02\% p)[GeV/c]\right)$$

- Liquid Kr EM Calorimeter: $\left(\frac{\sigma_E}{E} = (3.2\%/\sqrt{E} + 9\%/E + 0.42\%)[GeV]\right)$ $\left(\sigma_x = \sigma_u = (0.42\%/\sqrt{E} + 0.6)mm\right)$
- Hodoscope: trigger and fast timing $(\sigma_t = 200 ps)$

Strategy

- K_{e2} and $K_{\mu 2}$ are collected simultaneously:
 - independent from K flux (no normalization required)
 - cancellation at first order of several systematic effect (reconstruction/trigger efficiencies, time varying effects)
- Event counting in 10 bins of lepton momentum:

$$R_K = \frac{N(K_{e2}) - B(K_{e2})}{N(K_{\mu2}) - B(K_{\mu2})} \frac{A(K_{e2})}{A(K_{\mu2})} \frac{\epsilon(K_{e2})}{\epsilon(K_{\mu2})} \frac{\epsilon_e^{PID}}{\epsilon_\mu^{PID}} \frac{1}{\epsilon_{LKr}}$$

- MC (validated on data) used only for corrections:
 - acceptance (geometry)
 - backgrounds (μ catastrophic bremsstrahlung)
- Main systematics from $B(K_{e2})$

Efficiency of K_{e2} trigger monitored using $K_{\mu 2}$ and other control triggers

Minimum bias

High efficiency but low purity

- K_{e2} : $Q1 \times E_{LKr} \times 1TRK$ Purity $\approx 10^{-5}$
- $K_{\mu 2}$: $Q1 \times 1TRK/D$ downscaling (D) from 50 to 150 Purity $\approx 2\%$

 E_{LKr} inefficiency < 0.1% for $p > 15~{\rm GeV}/c$

Antonino Sergi Me

easurement of $BR(K \rightarrow e\nu_e)/BR(K \rightarrow \mu\nu_\mu)$ in NA

Selection

Criteria common to K_{e2} and $K_{\mu 2}$

- I reconstructed track
- Geometrical acceptance
- Decay vertex
- Veto extra energy in LKr
- $15GeV/c < p_{trk} < 65GeV/c$

Criteria selecting K_{e2} or $K_{\mu 2}$ • $|m^2_{miss}(l)| < 0.01 (GeV/c^2)^2$ • PID:

- 0.9 < E/p < 1.1 for electrons
- $\bullet~E/p < 0.85$ for muons
- Suppression of μ in e sample by 10^6

Antonino Sergi

Backgrounds

$K_{e2\gamma}$ (SD⁺)

Background for definition of R_K Rate similar to K_{e2} Poorly known (20%) Theory: $BR = (1.12 \pm 1.34)10^{-5}$ Measurement: $BR = (1.52 \pm 0.23)10^{-5}$ Now measured in NA62 data sample

Beam halo

Measured by means of the K^- data sample

 $(6.10 \pm 0.22)\%$ $(0.06 \pm 0.01)\%$ $(0.06 \pm 0.01)\%$

μ mis-identification as electron

Due to "catastrophic" bremsstrahlung $P(\mu \to e) \approx 3 \cdot 10^{-6} \Rightarrow P(\mu \to e)/R_K \approx 10\%$ Pure μ sample using lead filter (removing $\mu \rightarrow e\nu_e$)

Measurement of $BR(K \rightarrow e\nu_e)/BR(K \rightarrow \mu\nu_\mu)$ in NA62

Final result (40% of data sample)

Uncertainties	
Source	$\delta R_K imes 10^5$
Statistical	0.011
$K_{\mu 2}$	0.005
$K_{e2\gamma}$ (SD ⁺)	0.004
Beam halo	0.001
Acceptance	0.002
Positron ID	0.001
DCH alignmnent	0.001
1-track trigger	0.002
Total	0.013

Precision and accuracy

 $\begin{array}{l} {\rm 59,963} \ K_{e2} \ {\rm candidates} \\ {\rm Positron \ ID \ efficiency:} \ (99.27 \pm 0.05)\% \\ B/(S+B) = (8.78 \pm 0.29)\% \\ \delta R_K/R_K = 0.52\% \end{array}$

Result

Perspectives

With the full sample $\approx 150K K_{e2}$: statistical uncertainty 0.3%, total uncertainty $\approx 0.4\%$ within reach (in agreement with the original goal)

$R_K = (2.486 \pm 0.011_{stat} \pm 0.007_{syst}) \times 10^{-5}$

World Average

June 2010

Conclusions

- Kaon physics shows again to be a good tool for investigation in the flavour sector
- NA62 R_K measurement

 $R_K = (2.486 \pm 0.011_{stat} \pm 0.007_{syst}) \times 10^{-5}$

is currently in agreement with SM prediction

- Final result based on the full data sample should be ready in few months
- Precision measurements are placing non-trivial bounds on 2HDM parameters
- NA62 will not stop here