HQL 2010 – Laboratori Nazionali di Frascati – Oct. 12th 2010

Status, open problems and prospects of the decay $B^+ \rightarrow I^+ v$

Alejandro Pérez INFN – Sezione di Pisa On behalf of SuperB Collaboration

Heavy Quarks & Leptons

INFN - Laboratori Nazionali di Frascati 11th-15th October, 2010

Istituto Nazionale di Fisica Nucleare

Outline

Introduction

- Theoretical motivation
- The experimental technique (Recoil Analysis):
 - Semi-leptonic (SL)
 - Hadronic (HD)
- The main kinematic variables

Experimental status

- $B^+ \rightarrow e^+ \nu$ and $B^+ \rightarrow \mu^+ \nu$
- $B^+ \rightarrow \tau^+ \nu$

SuperB detector layout improvements:

- Reduced boost (from $\beta \gamma = 0.56$ to $\beta \gamma = 0.24$)
- Forward particle ID device (Fwd-PID)
- Backward Electromagnetic Calorimeter (Bwd-EMC)
- Some prospects for SuperB
- Summary and outlook

Introduction

$B^+ \rightarrow I^+ v$: Theoretical Motivation

Recoil Analysis Technique

Use the fact that the B mesons are actually produced through Y(4S) at B-factories

 $\begin{array}{l} \textbf{Breco} (\textbf{B}_{tag}) \text{: full (partial)} \\ \text{reconstruction of one B into a} \\ \text{hadronic (semi-leptonic) final state} \\ \textbf{Brecoil (B}_{sig}) \text{: look for the signal} \\ \text{signature, e.g. } \tau^{+} \text{not accompanied} \\ \text{by additional (charged+neutral)} \\ \text{particles + Missing Energy} \end{array}$

Recoil technique at B-Factories:

 search for rare decays (~10⁻⁵) with missing energy

(Not possible at hadronic machines)

Breco meson in Hadronic Channels

- BaBar and Belle use similar techniques:
 - Belle: Fully reconstruct B mesons in one of the hadronic channels, e.g. D^(*)π, D^(*)ρ, D^(*)a₁, D^(*)D_s^(*), etc
 - BaBar: Fully reconstruct with D^(*) + many light hadrons (up to 5 K⁺/π⁺, up to 2 K⁰_s, up to 2 π⁰)

Pro: higher purity, higher resolution, full kinematics can be examined Con: Lower efficiency (as low as ~0.4%)

Breco meson in Semi-Leptonic Channels

- BaBar and Belle use the same technique:
 - Reconstruct a B→D^(*)Iv decay with a clean D^(*) meson plus a high momentum charged lepton (e[±], μ[±])

Pro: higher efficiency

Con: Lower purity, bad resolution, additional neutrino

Main Kinematic Variables

Momentum of visible Brecoil daughters

- B⁺→e⁺v and B→µ⁺v: decay produces mono-energetic charged lepton in the Brecoil rest frame
- B→τ⁺ν: provides some discrimination against backgrounds

Extra energy in calorimeter

- The most powerful variable for separating signal and background
- Sum up neutral clusters not associated to Breco and Brecoil
- Signal: zero or tiny extra energy from beam background (possible issue for SuperB)

$B^+ \rightarrow e^+ \nu$ and $B^+ \rightarrow \mu^+ \nu$

- No events seen. All upper limits (90% C.L.) above SM value
- BaBar hadronic tag:

Phys.Rev.D79:091101, 2009. arXiv:0903.1220

- $Br(B^+ \rightarrow e^+ v) < 1.9 \times 10^{-6}$
- Br(B⁺ \rightarrow μ ⁺ ν) < 1.0×10⁻⁶
- BaBar semileptonic tag:

Phys.Rev.D81:051101, 2010. arXiv:0809.4027

- $Br(B^+ \rightarrow e^+ v) < 0.8 \times 10^{-5}$
- Br(B⁺ \to $\mu^+\nu$) < 1.1×10⁻⁵
- Belle report the limits: Phys.Lett. B 646, 67 (2007)
 - $Br(B^+ \rightarrow e^+ v) < 0.98 \times 10^{-6}$
 - $Br(B^+ \rightarrow \mu^+ \nu) < 1.70 \times 10^{-6}$

Alejandro Pérez, HQL 2010 - Labo

B⁺→τ⁺ν: BaBar results

- Plot shows excess energy for τ⁺ decays to e⁺, μ⁺, π⁺ and ρ⁺ with hadronic tags
- Signal excess near zero
 ⇒ consistent excess for all 4
 channels
- Combined hadronic tag result (preliminary) arXiv:1008.0104

 $Br(B \rightarrow \tau^+ \nu) = (1.80 + 0.57)_{-0.54} \pm 0.26) \times 10^{-4}$

Combined semileptonic tag result
 Phys.Rev.D81:051101, 2010

 $Br(B \rightarrow \tau^+ \nu) = (1.7 \pm 0.8 \pm 0.2) \times 10^{-4}$

BaBar Hadronic tag

$B^+ \rightarrow \tau^+ \nu$: Belle results

- Plot shows excess energy for all τ⁺ decays and for decays to e⁺, μ⁺ and π⁺ with semileptonic tags
- Signal excess near zero
 ⇒ consistent excess for all 4
 channels
- Combined hadronic tag result
 Phys.Rev.D97:251802, 2006

 $Br(B \rightarrow \tau^+ \nu) = (1.79 \begin{array}{c} {}^{+0.56} {}^{+0.46} \\ {}^{-0.49} {}^{-0.51} \end{array}) \times 10^{-4}$

Combined semileptonic tag result
 arXiv: 1006.4201

 $Br(B \rightarrow \tau^+ \nu) = (1.54 \begin{array}{c} ^{+0.38} ^{+0.29} \\ _{-0.37} ^{-0.31}) \times 10^{-4}$

B⁺ $\rightarrow \tau^+ \nu$: **Combination and Higgs Limits**

$B^+ \rightarrow \tau^+ \nu$: tension with CKM results

- UTfit: prediction (Tarantino's ICHEP10 talk) Br(B⁺→τ⁺ν) = (0.805± 0.071)×10⁻⁴
 2.6σ disagreement with experimental value
- CKMfitter: prediction (T'Jampens ICHEP10 talk) Br(B⁺→τ⁺ν) = (0.763 ^{+0.114}_{-0.061})×10⁻⁴ 2.8σ disagreement with experimental value
- Fit to all measurements, including f_B
- The different statistical approaches give similar messages: some tension between V_μ and sin2β

SuperB Detector Layout

- Baseline configuration: BaBar with a reduced boost (βγ = 0.24 instead of 0.56) ⇒ higher geometrical acceptance ⇒ higher efficiency
- Additional detector components proposed:
 - Forward particle identification device (Fwd-PID)
 - Backward electromagnetic calorimeter (Bwd-EMC)

From $\beta \gamma = 0.56$ to $\beta \gamma = 0.24$

- Reducing the collision boost increases the detector acceptance ⇒ fewer particles get lost through the beam pipe
- This increases the number of selected events for signal and background (bkg)
- But for the missing Mass:
 - Marginal effect for signal
 - Significant effect for bkg (shifted to zero)
 ⇒ variable more efficient to separate
 signal and background
- Gain on the S/B ratio:
 - Signal efficiency: relative increase of ~7%
 - Bkg efficiency: relative decrease of ~6%

Alejandro Pérez, HQL 2010 - Laboratori Nazionali di Frascati - C-----

The Fwd-PID: the device (fTOF)

The Fwd-PID: fTOF in action

The Bwd-EMC: Veto device

- No B_{tag} and B_{sig} candidates with neutrals from Bwd-EMC
- Two E_{extra} variables:
 - → E_{extra} (Barrel-Fwd) = Σ (extra neutrals on Barrel-Fwd EMC) (to fit on)
 - $= E_{extra}(Bwd) = \Sigma(extra neutrals on Bwd EMC)$ (to cut on)
- Test different $E(\gamma)_{min}$ cut for Bwd-EMC photons (none, 30, 50, 70 MeV)
- Try to define an optimum cut that maximizes a figure of merits $\Rightarrow S/\sqrt{(S+B)}$

The Bwd-EMC in action (I)

The Bwd-EMC in action (II)

Some prospects for SuperB: $B^+ \rightarrow \tau^+ \nu$ (I)

HQL 2010 - Laboratori Nazionali di Frascati - October 12th 2010

Some prospects for SuperB: $B^+ \rightarrow \tau^+ \nu$ (II)

Some prospects for SuperB: $B^+ \rightarrow \mu^+ \nu$ (I)

HQL 2010 - Laboratori Nazionali di Frascati - October 12th 2010

Some prospects for SuperB: $B^+ \rightarrow \mu^+ \nu$ (II)

Summary and outlook

- Measurement of B⁺ $\rightarrow \tau^+ \nu$ is a strong constraint on BSM models (Currently a source of tension with the CKM fit)
- SuperB factory will not only increase the luminosity 100 times
 - Reduced boost ($\beta\gamma = 0.24$): signal (bkg) efficiency increase (reduction) by ~7% (6%)
 - Fwd-PID: global increase of signal and bkg efficiencies by ~2.5%
 - Bwd-EMC (veto device): reduction of bkg by ~10% with marginal effect on signal
- Prospects $B^+ \rightarrow \tau^+ \nu$:
 - With current systematics $B^+ \rightarrow \tau^+ \nu$ measurement will be systematic dominated
 - Still the panorama looks good ⇒ precision of ~10% (~5%) for conservative (not so conservative) scenarios
 - Can significantly reduce the parameter space of NP models
 - Important message: systematics need to be studied and reduced
- Prospects $B^+ \rightarrow \mu^+ \nu$:
 - It seems that the measurement wont be dominated by systematics
 - Competitive with $B^+ \rightarrow \tau^+ v$ to reduce the parameter space of NP models
 - Panorama looks good ⇒ precision of ~6.8% (~6.1%) for conservative (not so conservative) scenarios

Golden Matrix for B-Physics

		H^+	Minimal	Non-Minimal	Non-Minimal	NP	Right-Handed
		high ${\rm tan}\beta$	\mathbf{FV}	FV (1-3)	FV (2-3)	Z-penguins	currents
	$\mathcal{B}(B \to X_s \gamma)$		X		О		О
	$A_{CP}(B \to X_s \gamma)$				X		О
-	$\mathcal{B}(B \to \tau \nu)$	X-CKM					
	$\mathcal{B}(B \to X_s l^+ l^-)$				О	О	О
-	$\mathcal{B}(B \to K \nu \overline{\nu})$				О	X	
	$S(K_S \pi^0 \gamma)$			V OKM			X
	β			X-CKIVI			
Γ	X The GOLDEN channel for the given scenario						
	O Not the GOL	Not the GOLDEN channel for the given scenario,					
but can show experimentally measurable deviations from SM.							
Super B enecifice							
						specifics	
	Baro docave with						
-		cays w			Channels	with π° , γ , ∇	, KS
	missing	energy					