The CKM analysis: inputs from theory

Vittorio Lubicz

hol10@inf.infn.it

www.lnf.infn.it/conference/hal10

This talk is dedicated to NICOLA CABIBBO

He was the "father of flavor physics" [M .Wise] Universality of weak interactions, the Cabibbo angle, the GIM mechanism, the CKM matrix, ...

He has given fundamental contributions to

Lattice QCD The Cabibbo-Marinari algorithm, Weak interactions on the lattice (Cabibbo-Martinelli-Petronzio), the APE project (Cabibbo, Parisi, ...)

OUTLINE

• The 1st row unitarity test Processes: $K \rightarrow I \nu$, $K \rightarrow \pi I \nu$ Theory input: f_K/f_{π} , $f_{+}(0)$

• The 2nd row unitarity test Processes: $D_{(s)} \rightarrow I \nu$, $D \rightarrow K/\pi I \nu$ Theory input: f_D , f_{Ds} , $f_+(0)$

• The unitarity triangle analysis Processes: $B \rightarrow Iv$, $B \rightarrow D/\pi Iv$, K-K, $B_{(s)}$ - $B_{(s)}$ Theory input: f_B , f_{Bs} , $f_{+}(0)$, B_K , $B_{B(s)}$

$$|V_{ud}|^2 + |V_{us}|^2 + |V_{ub}|^2 = 1$$

The most stringent unitarity test

Processes: $K \rightarrow I \nu$, $K \rightarrow \pi I \nu$ Theory input: f_K/f_{π} , $f_{+}(0)$

$$\frac{|V_{us}|}{|V_{ud}|} \frac{f_k}{f_{\pi}} = 0.2758(5)$$

LQCD independent estimates of f_{K}/f_{π} , $f_{+}(0)$

<u>Assuming the Standard Model</u> and combining with nuclear β decays

History of LQCD errors until 2006

For many years, uncertainties in lattice calculations have been dominated by the quenched approximation

	f _B [MeV]	$f_{Bs}\sqrt{B_s}$ [MeV]	ξ	
J.Flynn	175(25)			
Latt'96	14%			
C.Bernard	200(30)	267(46)	1.16(5)	
Latt'00	15%	17%	4%	QUENCHED
L.Lellouch	193(27)(10)	276(38)	1.24(4)(6)	
Ichep'02	15%	14%	6%	
Hashimoto	189(27)	262(35)	1.23(6)	$\left(\begin{array}{c} 6 \\ 9 \\ \end{array} \right) $
Ichep'04	14%	13%	5%	
N.Tantalo	223(15)(19)	246(16)(20)	1.21(2)(5)	UNQUENCHED
CKM'06	11%	10%	4%	

THE "PRECISION ERA" OF LATTICE QCD

1) Increasing of computational power

TeraFlops machines are required to perform unquenched simulations. Available only since few years.

2) Algorithmic improvements

CPU cost of a simulation (for Nf=2 Wilson fermions):

2

- Ukawa 2001
TFlops-years
$$\approx (3.1) \left(\frac{N_{conf}}{100}\right) \left(\frac{L_s}{3 \text{ fm}}\right)^5 \left(\frac{L_t}{2L_s}\right) \left(\frac{0.2}{\hat{m}/m_s}\right)^3 \left(\frac{0.1 \text{ fm}}{a}\right)^7$$

- Del Debbio et al. 2006
TFlops-years $\approx 0.03 \left(\frac{N_{conf}}{100}\right) \left(\frac{L_s}{3 \text{ fm}}\right)^5 \left(\frac{L_t}{2L_s}\right) \left(\frac{0.2}{\hat{m}/m_s}\right) \left(\frac{0.1 \text{ fm}}{a}\right)^6$
 $M_{\pi} \approx 200-300 \text{ MeV} \longrightarrow \text{ Light quark masses in the ChPT regineration of the constant of the c$

FLAVOUR PHYSICS ON THE LATTICE

Collaboration	Quark action	Nf	a [fm]	(M _π) ^{min} [MeV]	Observables
MILC + FNAL, HPQCD,	Improved staggered	2+1	≥ 0.045	230	$f_{K}, B_{K}, f_{D(s)},$ D $\rightarrow \pi/K I_{V}, f_{B(s)},$ B _{B(s)} , B \rightarrow D/ πI_{V}
PACS-CS	Clover (NP)	2+1	0.09	156	f _K
RBC/UKQCD	DWF	2+1	≥ 0.08	290	f ₊ (0), f _K , B _K
BMW	Clover smeared	2+1	≥ 0.07	190	f _K
JLQCD	Overlap	2 2+1	0.12	290	B _K
ETMC	Twisted mass	2 2+1+1	≥ 0.07	260	f ₊ (0), f _K , B _K ,f _{D(s)} , D→π/KIν, f _{B(s)}
QCDSF	Clover (NP)	2	≥ 0.06	300	f ₊ (0), f _K

PRECISION FLAVOUR PHYSICS

Experiments 2010				Lattice	2006	
V _{us} f ₊ (0)	0.21661 ± 0.00047	0.2%	ſ	f ₊ (0)	0.5%	0.9%
$\frac{ \mathbf{V}_{us} \mathbf{F}_{K}}{ \mathbf{V}_{ud} \mathbf{F}_{\pi}}$	0.27599 ± 0.00059	0.2%		F_K/ F _π	0.9%	1.1%
٤ _K	(2.228 ± 0.011) × 10 ⁻³	0.5%		Β _κ	5%	11%
Δm _d	(0.507 ± 0.005) ps ⁻¹	1%		$f_B \sqrt{B_B}$	5%	13%
Δm _s	(17.77 ± 0.12) ps ⁻¹	0.7%		f _{Bs} √B _{Bs}	5%	13%
Sin2β	0.655 ± 0.027	4%				

V_{us}/V_{ud} from leptonic K decays: f_K/f_{π}

V_{us} from semileptonic K decays: $f_{+}^{K\pi}(0)$

$$\Gamma_{K \to \pi l \nu} = C_K^2 \frac{G_F^2 m_K^5}{192\pi^2} I S_{\text{EW}} [1 + \Delta_{SU(2)} + 2\Delta_{\text{EM}}] \times [V_{us}|^2 |f_+^{K\pi}(0)|^2]$$

Ademollo-
Gatto:
$$f_{+}(0) = 1 - O(m_s - m_u)^2 \longleftarrow O(1\%)$$
. But represents the largest theoret. uncertainty

V_{us} from semileptonic K decays: $f_{+}^{K\pi}(0)$

The 1st row unitarity test

THE 2nd ROW UNITARITY TEST

$$|V_{cd}|^2 + |V_{cs}|^2 + |V_{cb}|^2 = 1$$

$$\Delta_{\rm CKM} = |V_{\rm cd}|^2 + |V_{\rm cs}|^2 + |V_{\rm cb}|^2 - 1 = 0.14(13) \quad [PDG 08]$$

Processes: $D_{(s)} \rightarrow I\nu$, $D \rightarrow K/\pi I\nu$ Theory input: f_D , f_{Ds} , $f_{+}(0)$

Leptonic D_(s) mesons decays: f_D, f_{Ds}

The discrepancy led to speculations about new physics in leptonic D-decays

B.Dobrescu, A.Kronfeld, 0803.0512 "Evidence for nonstandard leptonic decays of Ds mesons"

2010: the puzzle solution

1 sigma agreement

V_{cs} and V_{cd} from semileptonic D decays

New lattice calculations: HPQCD, FNAL/MILC, ETMC

$D \rightarrow K$, ETMC (Nf=2) LAT2010, prelim. $- f_0(q^2)/f(0)$ ETMC N = 2 (Partially Q. HMChPT, continuum) f (q²)/f(0) ETMC N=2 (Partially Q. HMChPT, continuum) **f** $(q^2)/f(0)$ BaBar D⁰->K⁻ [PRD 76 052005 (2007)] $f_{1}(q^{2})/f(0)$ FOCUS D^{0} ->K [PL B607 233 (2005)] 2.5 m_ ~ 480 MeV - 270 MeV a ~ 0.100 fm - 0.063 fm 1.5 0.5 0.2 0.4 0.6 0.8 1.6 1.8 1.2 1.4 $q^2 (GeV^2)$

	f D→π (0)	f ^{D→K} (0)
FNAL/MILC/ HPQCD 2004	0.64(7)	0.73(8)
ETMC 2010 (preliminary)	0.66(6)	0.76(4)
HPQCD 2010		0.75(2)

The 2nd row and 2nd column unitarity test

Very precise experimental results from BaBar and CLEO-c

$$|V_{cs}| f_{+}^{D \to K}(0) = 0.718(8)$$

CLEO-c + BaBar average

The unitarity tests

THE UNITARITY TRIANGLE ANALYSIS

$$V_{ud} V_{ub}^* + V_{cd} V_{cb}^* + V_{td} V_{tb}^* = 0$$

Processes: $B \rightarrow I \nu$, $B \rightarrow D/\pi I \nu$, K - K, $B_{(s)} - B_{(s)}$ Theory input: f_B , f_{Bs} , $f_+(0)$, B_K , B_B , ...

THE UTA CONSTRAINTS

UT-ANGLES

See also talks by C. Tarantino and L. Silvestrini

Exclusive vs Inclusive Vub

THEORETICALLY CLEAN BUT MORE LATTICE CALCULATIONS ARE WELCOME

IMPORTANT LONG DISTANCE CONTRIBUTIONS. THE RESULTS ARE MODEL DEPENDENT

Exclusive vs Inclusive Vub

• The uncertainty of inclusive Vub estimated from the spread among different models. This is questionable

Exclusive Vcb

 $G(1) = 1.060 \pm 0.035$

3%

TWO DIFFERENT APPROACHES:

- "double ratios" (FNAL)
- "step scaling" (TOV)

Remarkable agreement

Exclusive vs Inclusive Vcb

 $|V_{cb}|_{SM-Fit}$ = (42.7 ± 1.0) 10⁻³

K⁰-K⁰ mixing: B_K

	_					Cost of	the "S	uperB" lattice simulation
A	loo fu	k d Itu	at i Ire	the		Simulatio paramete Nconf = 120 a = 0.033 fm [1/a = 6.0 GeV $\hat{m}/m_s = 1/12$ [$M_{\pi} = 200$ MeV	on ers V]	Projected Performance Development
			_			L _s = 4.5 fm [V = 136 ³ × 270	0]	100 MRaps 100 MRaps 5
			K		VL	• 3 PFlop-ye	ears BIV	Affordable with 1–10 PFlops available for Lattice QCD in 2015!
	Gnper J	3IV VII MO	V.Lubicz @ Ila Mondragone onte Porzio Catono 3 - 15 November 2) e - Italy 2006		E	- 0.6	Y AT
Hadnonia	Lattice	1						
matrix element	error in 2006	error in 2009	6 TFlop Year [2009]	60 TFlop Year [2011 LHCb]	1-10 PFlop Year [2015 SuperB]		0.5	Δms
$\frac{\text{matrix}}{\text{element}}$	error in 2006 0.9%	error in 2009 0.5%	6 TFlop Year [2009] 0.7%	60 TFlop Year [2011 LHCb] 0.4%	1-10 PFlop Year [2015 SuperB] < 0.1%		0.5 0.4	Δms α 2β+γ
$\begin{array}{c} \text{matrix} \\ \text{element} \\ \hline f_{+}^{\text{K}\pi}(0) \\ \hline \hat{B}_{\text{K}} \end{array}$	error in 2006 0.9% 11%	Lattice error in 2009 0.5% 5%	6 TFlop Year [2009] 0.7% 5%	60 TFlop Year [2011 LHCb] 0.4% 3%	1-10 PFlop Year [2015 SuperB] < 0.1% 1%		0.5 0.4 0.3 ^ε κ	Δms α 2β+γ β
$\begin{array}{c} \text{matrix} \\ \text{element} \\ \hline f_{+}^{K\pi}(0) \\ \hline \hat{B}_{K} \\ \hline f_{B} \\ \hline \end{array}$	Ldffice error in 2006 0.9% 11% 14%	Lattice error in 2009 0.5% 5% 5%	6 TFlop Year [2009] 0.7% 5% 3.5 - 4.5%	60 TFlop Year [2011 LHCb] 0.4% 3% 2.5 - 4.0%	1-10 PFlop		0.5 0.4 0.3 [€] K 0.2	Δms α 2β+γ β ΙΥ Ι
$\begin{array}{c} \text{matrix} \\ \text{element} \\ \hline f_{+}^{K\pi}(0) \\ \hline \hat{B}_{K} \\ \hline f_{B} \\ \hline f_{Bs} B_{Bs}^{1/2} \\ \hline \end{array}$	Ldffice error in 2006 0.9% 11% 14% 13%	Lattice error in 2009 0.5% 5% 5% 5%	6 TFlop Year [2009] 0.7% 5% 3.5 - 4.5% 4 - 5%	60 TFlop Year [2011 LHCb] 0.4% 3% 2.5 - 4.0% 3 - 4%	1-10 PFlop		0.5 0.4 0.3 ϵ_{κ} 0.2 0.1	Δm _s α 2β+γ β Δm _d
$\begin{array}{c} \text{matrix} \\ \text{matrix} \\ \text{element} \\ \hline f_{+}^{K\pi}(0) \\ \hline \hat{B}_{K} \\ \hline f_{B} \\ f_{Bs} B_{Bs}^{1/2} \\ \hline f_{Bs} B_{Bs}^{1/2} \\ \hline \xi \end{array}$	Ldffice error in 2006 0.9% 11% 14% 13% 5%	Lattice error in 2009 0.5% 5% 5% 5% 2%	6 TFlop Year [2009] 0.7% 5% 3.5 - 4.5% 4 - 5% 3%	60 TFlop Year [2011 LHCb] 0.4% 3% 2.5 - 4.0% 3 - 4% 1.5 - 2 %	1-10 PFlop Year [2015 SuperB] < 0.1% 1% 1-1.5% 1-1.5% 0.5-0.8 %		0.5 0.4 0.3 $\epsilon_{\rm K}$ 0.2 0.1	$\frac{\Delta m_{s}}{2\beta + \gamma}$ $\frac{\Delta m_{d}}{\Delta m_{d}}$
$\begin{array}{c} \text{matrix} \\ \text{matrix} \\ \text{element} \\ \hline f_{+}^{K\pi}(0) \\ \hline \hat{B}_{K} \\ \hline f_{B} \\ f_{Bs} B_{Bs}^{1/2} \\ \hline f_{Bs} B_{Bs}^{1/2} \\ \hline \xi \\ \hline \mathcal{F}_{B \rightarrow D/D^{*} Iv} \end{array}$	Ldffice error in 2006 0.9% 11% 14% 13% 5% 4%	Lattice error in 2009 0.5% 5% 5% 5% 2% 2%	6 TFlop Year 2009] 0.7% 5% 3.5 - 4.5% 4 - 5% 3% 2%	60 TFlop Year [2011 LHCb] 0.4% 3% 2.5 - 4.0% 3 - 4% 1.5 - 2 % 1.2%	$\begin{array}{r} 1-10 \text{ PFlop} \\ \text{Year} \\ \hline [2015 \text{ SuperB}] \\ < 0.1\% \\ 1\% \\ 1-1.5\% \\ 1-1.5\% \\ 0.5-0.8\% \\ 0.5\% \end{array}$		0.5 0.4 0.3 ϵ_{κ} 0.2 0.1	$\frac{\Delta m_{s}}{2\beta + \gamma}$ $\frac{2\beta + \gamma}{\beta}$ $\Delta m_{d} \qquad \left \frac{V_{ub}}{V_{cb}} \right $ $BR(B \rightarrow \tau \nu)$
$\begin{array}{c} \text{matrix}\\ \text{matrix}\\ \text{element}\\ \hline f_{+}^{K\pi}(0)\\ \hline B_{K}\\ \hline f_{B}\\ \hline f_{Bs}B_{Bs}^{1/2}\\ \hline \xi\\ \hline \mathcal{F}_{B\to D/D^{*}I\nu}\\ \hline f_{+}^{B\pi}, \dots\\ \hline \end{array}$	Ldffice error in 2006 0.9% 11% 14% 13% 5% 4% 11%	Lattice error in 2009 0.5% 5% 5% 5% 2% 2% 2% 11%	6 TFlop Year [2009] 0.7% 5% 3.5 - 4.5% 4 - 5% 3% 2% 5.5 - 6.5%	60 TFlop Year [2011 LHCb] 0.4% 3% 2.5 - 4.0% 3 - 4% 1.5 - 2 % 1.2% 4 - 5%	$\begin{array}{c} 1-10 \text{ PFlop} \\ \text{Year} \\ \hline [2015 \text{ SuperB}] \\ < 0.1\% \\ 1\% \\ 1-1.5\% \\ 1-1.5\% \\ 0.5-0.8\% \\ 0.5\% \\ 2-3\% \end{array}$		0.5 0.4 0.3 ϵ_{κ} 0.2 0.1 0 -0.1 0	Δm _s 2β+γ Δm _d V _{ub} Δm _d V _{ub} BR(B→τν) Um _t 0.1 0.2 0.3 0.4 0.5 0.6

D