G. Isidori – *Rare B & D decays: a theoretical overview*

Rare B & D decays: a theoretical overview

<u>Gino Isidori</u> [*INFN, Frascati*]

Introduction

Recent developments in quark-flavour mixing

Selcted rare B decays

- A very brief look to D decays
- Conclusions

Introduction

To a large extent, the origin of "flavour" is still a mystery... Our "ignorance" can be summarized by the following two open questions:

- What determines the observed pattern of masses and mixing angles of quarks and leptons?
- Which are the sources of flavour symmetry breaking accessible at low energies? [Is there anything else beside SM Yukawa couplings & neutrino mass matrix?]

Introduction

To a large extent, the origin of "flavour" is still a mystery... Our "ignorance" can be summarized by the following two open questions:

• What determines the observed pattern of masses and mixing angles of quarks and leptons?

Some "popular" answers to this question are obtained by means of

- Abelian or non-Abelian continuos flavour symmetries
- Discrete flavour symmetries
- Fermion profiles in extra dimensions

But other options are also possible.

In all cases it is quite easy to reproduce the observed mass matrices in terms of a reduced number of free parameters, while it is difficult to avoid problems with FCNCs (<u>rare decays</u>) without some amount of fine-tuning.

Hard to make progress without knowing the ultraviolet completion of the SM.

Introduction

To a large extent, the origin of "flavour" is still a mystery... Our "ignorance" can be summarized by the following two open questions:

• What determines the observed pattern of masses and mixing angles of quarks and leptons?

 Which are the sources of flavour symmetry breaking accessible at low energies? [Is there anything else beside SM Yukawa couplings & neutrino mass matrix?]

Answering this question is more easy:

- It can be formulated independently of the UV completion of the theory
- It is mainly a question of precision (both on the theory and on the experimental side): <u>key role of rare decays</u>

Main goal of flavour-physics in the <u>early LHC era</u>

G. Isidori – Rare B & D decays: a theoretical overview

Recent developments in quark-flavour mixing

 Good overall consistency of the CKM picture

The leading contribution to flavour-changing processes is due to SM

New flavor-breaking sources of O(1) at the TeV scale are definitely excluded

Recent developments in quark-flavour mixing

 Good overall consistency of the CKM picture

The leading contribution to flavour-changing processes is due to SM

 But some "creeks" are emerging in some suppressed observables. Most notable examples:

		SM pred.	data	pull
- The $A_{\psi K}$ - $sin(2\beta)$ tension	$A_{\psi K}$	$.771 \pm .036$	$.654 \pm .026$	2.7σ
- CPV in Bs mixing	$\phi_{s} = -2 \beta_{s} $	$.038 \pm .003$	$\sim 0.7 \pm 0.3$	~ 2 σ
• $B \rightarrow \tau \nu$]	$10^4 \operatorname{B}(\mathrm{B} \rightarrow \tau \mathrm{v})$	0.81 ± 0.07	1.72 ± 0.28	3.2σ
				Tree

Recent developments in quark-flavour mixing

These deviations from the SM are quite "natural" (suppressed observables) and, at least in some cases, could be the first *signals of new dynamics at the TeV scale*

Two main options:

- Minimal Flavour Violation hypothesis: the new dynamics does not introduce new sources of flavour symmetry breaking [*flavour degeneracy broken only by the SM Yukawa couplings*].
- Beyond MFV: the new dynamics does introduce new (presumably small) sources of flavour symmetry breaking.

Key tool to make progress in this field is to identify <u>correlations</u> among different observables (epsecially rare decays) \Rightarrow <u>flavour pattern</u> of the new dynamics at the TeV scale

Selected rare B decays

A selected list of particularly interesting modes/observables:

- $B \rightarrow \tau \nu \ (l \nu)$
- B $\rightarrow l^+l^-$
- B $\rightarrow K^{(*)}l^+l^-$
- $B \rightarrow D \tau v$
- B $\rightarrow K^{(*)}\nu\nu$

 $B \rightarrow \tau \nu$

The helicity suppression of the SM amplitude makes $B \rightarrow \tau v$ an excellent probe of models with an extended Higgs sector

 $B(B \rightarrow l\nu)_{SM} = C_0 f_B^2 |V_{ub}|^2$

Very clean test of the SM, <u>provided</u> reliable independent infos on $f_{\rm B}$ & V_{ub}

$$B(B \to \tau \nu)_{exp} = (1.68 \pm 0.31) \times 10^{-4}$$

 $B_{SM} = (0.79 \pm 0.07) \times 10^{-4} \text{ UTfit '10 [global fit]}$

longitudinal comp. of the W

 $B \rightarrow \tau \nu$

The helicity suppression of the SM amplitude makes $B \rightarrow \tau v$ an excellent probe of models with an extended Higgs sector, such as the MSSM...

$$B(B \rightarrow l\nu) = B_{SM} \left(1 - \frac{m_B^2 \tan\beta^2}{M_H^2 (1 + \epsilon_0 \tan\beta)} \right)$$

longitudinal comp. of the W

extra tree-level contribution simple M_H & tan β dependence

Very significant constraint on 2HDM & MSSM at large $\tan\beta = v_2/v_1$, with great potential of improvement in the future

N.B.: *in the simplest version of these models the effect is negative...*

 $B \rightarrow l \nu$

More exotic possibilities on $B \rightarrow l\nu$: if the model has sizable non-minimal sources of flavour symmetry breaking in the lepton sector \Rightarrow large violations of leptonflavour universality

$$\Gamma(B \to \mu \nu)^{\exp} = \Gamma(B \to \mu \nu_{\mu}) + \Gamma(B \to \mu \nu_{e}) + \Gamma(B \to \mu \nu_{\tau})$$

$$\underset{\text{SM}}{\text{SM}} \approx 0 \qquad \text{scalar LFV}$$
amplitude
Possible probe of this effect in the ratios:

 $\mathbf{R}^{\mathbf{B}}_{\mu\tau} = \frac{\Gamma(B^{+} \to \mu^{+} \mathbf{v})}{\Gamma(B^{+} \to \tau^{+} \mathbf{v})} \qquad \mathbf{R}^{\mathbf{B}}_{e\tau} = \frac{\Gamma(B^{+} \to e^{+} \mathbf{v})}{\Gamma(B^{+} \to \tau^{+} \mathbf{v})}$ $\Delta \sim 10\% (R^B_{\mu\tau})^{SM} \sim 10^3 \times (R^B_{e\tau})^{SM}$

> G.I. & Paradisi '06 G.I. & Filipuzzi '09

 μ_R b_R H^+ ST

Interesting correlation with the same phenomenon in the Kaon system, which so far set the best upper limit

$$\mathbf{R}^{\mathbf{K}}_{\mu e} = \frac{\Gamma(K^+ \to \mu^+ \nu)}{\Gamma(K^+ \to e^+ \nu)} \quad \longrightarrow \quad \Delta \quad \sim 1\%$$

G. Isidori – *Rare B & D decays: a theoretical overview*

These rare decays are both <u>helicity suppressed</u> and <u>GIM suppressed</u> (FCNC)

Excellent probes of models with 2 Higgs doublets (such as the MSSM) at large/moderate $tan\beta$

longitudinal comp. of the Z (one-loop indiced Z penguin) + realted box amplitude

These rare decays are both <u>helicity suppressed</u> and <u>GIM suppressed</u> (FCNC)

Excellent probes of models with 2 Higgs doublets (such as the MSSM) at large/moderate $tan\beta$

diag(Y_U) = diag(m_u) / $\langle H_U \rangle$ diag(Y_D) = diag(m_d) / $\langle H_D \rangle$ = tan β m_d / $\langle H_U \rangle$

Even in MFV, the different normalization of the Yukawa couplings induces an effective <u>Higgs-mediated FCNC coupling</u>:

No impact in helicity-conserving processes, but possible large effect in $B \rightarrow l^+ l^-$

Nice link with models explaining $\Delta F=2$ anomalies

Present exp. status:

 $B(B_s \to \mu\mu) < 4.8 \times 10^{-8} (95\% CL)$

 $B(B_d \rightarrow \mu\mu) < 7.6 \times 10^{-9} (95\% CL)$ [CDF '09] SM expectations: $B(B_s \rightarrow \mu\mu)_{SM} = 3.2(2) \times 10^{-9}$ $B(B_d \rightarrow \mu\mu)_{SM} = 1.0(1) \times 10^{-10}$ *e* channels suppressed by $(m_e/m_{\mu})^2$ τ channles enhanced by $(m_{\tau}/m_{\mu})^2$

Within the MSSM, wit MFV:

$$A(B \rightarrow ll)_{H} \sim \frac{m_{b}m_{l}}{M_{A}^{2}} \frac{\mu A_{U}}{\widetilde{M}_{q}^{2}} \tan^{3}\beta$$

<u>Possible large enhancement over the SM</u> but the magnitude of the effect can vary a lot in different SUSY-breaking scenarios

• Th. error controlled by f_B (\Rightarrow lattice). Not a big issue if deviations from SM are large, but important to improve in view of future precise measurements

• The B($B_d \rightarrow \mu \mu$)/B($B_s \rightarrow \mu \mu$) ratio is a key observable to proof or falsify MFV

G. Isidori – *Rare B & D decays: a theoretical overview*

Present exp. status:

 $B(B_s \to \mu\mu) < 4.8 \times 10^{-8} (95\% CL)$

 $B(B_d \rightarrow \mu\mu) < 7.6 \times 10^{-9} (95\% CL)$ [CDF '09] SM expectations:

 $B(B_s \to \mu \mu)_{SM} = 3.2(2) \times 10^{-9}$

 $B(B_d \rightarrow \mu \mu)_{SM} = 1.0(1) \times 10^{-10}$

Reaching the SM level would lead to a very significant constraint in the (C)MSSM

 $B \rightarrow K^{(*)} l^+ l^-$

The accuracy on these FCNC decays depends on the th. control of $B \rightarrow K, K^*$ *hadronic form factors* :

$$A(B \rightarrow f) = \sum_{i} C_{i}(\mu) \langle f | Q_{i} | B \rangle(\mu) \qquad \mu \sim m_{b}$$

⇒ several progress in the last few years [SCET, LCSR, Lattice] but typical errors still ~ 30%

The most difficult observables are the total branching ratios, th. errors are considerably reduced in appropriate <u>ratios</u> or <u>differential distributions</u>.

Notable example: $A_{\text{FB}} (B \rightarrow K^* l^+ l^-)$

 $\overline{A}_{FB} = \frac{d\Gamma(\cos\theta > 0)/ds - d\Gamma(\cos\theta < 0)/ds}{d\Gamma(\cos\theta > 0)/ds + d\Gamma(\cos\theta < 0)/ds}$

 $B \to K^{(*)} l^+ l^-$

- Interference of axial & vector currents ⇒ direct access to the *relative phases* of the Wilson coefficients
- Uncertainties of hadronic form factors under control in the low-q² region (pQCD, sum-rules)
 Beneke, Feldmann, Seidel '01

Sensitive test of various realistic extensions of the SM (e.g. non-standard Zbs effective coupling)

Ali et al. '00; Buchalla et al. '01

[...] Altmannshofer *et al.* '09

$\mathbf{B} \to \mathbf{K}^{(*)} \, l^+ l^-$

Belle has recently reached an interesting sensitivity on this observable:

The agreement with SM expectations is not perfect (but claiming a significant deviation is definitely premature!) LHCb/Tevatron will find out if the discrepancy is serious...

$\mathbf{B} \to \mathbf{K}^{(*)} \, l^+ l^-$

Belle has recently reached an interesting sensitivity on this observable:

The agreement with SM expectations is not perfect (but claiming a significant deviation is definitely premature!) LHCb/Tevatron will find out if the discrepancy is serious...

Certainly large room for NP even in "conservative" beyond-SM models

$B \rightarrow D\tau v$

NP sensitivity similar to $B \rightarrow \tau \nu$ (*interesting for hadron mchines ?*): good sensitivity to charged-current scalar amplitudes (large τ Yukawa coupling) [typical size of deviation from SM: ~30-40% smaller than in $B \rightarrow \tau \nu$]

Theory uncertainty (hadronic form factors) substantially reduced (below 10%) if the rate is normalised to $B \rightarrow Dev$ [possible further improvement with Lattice QCD]

$$\frac{\mathbf{B}(B \to D\tau \mathbf{v})}{\mathbf{B}(B \to De\mathbf{v})} \bigg|_{\text{SM}} = (0.28 \pm 0.02)$$

$B \rightarrow D\tau v$

NP sensitivity similar to $B \rightarrow \tau \nu$ (*interesting for hadron mchines ?*): good sensitivity to charged-current scalar amplitudes (large τ Yukawa coupling) [typical size of deviation from SM: ~30-40% smaller than in $B \rightarrow \tau \nu$]

12

 $B \rightarrow K^{(*)} \nu \nu$

Extremely "clean modes" both within and beyond the SM (virtually no longdistance contributions):

Buras, Gemmler, G.I. '10 $\mathcal{B}(B \to K \nu \bar{\nu})_{\rm SM} = (3.64 \pm 0.47) \times 10^{-6}$ 15 $\mathcal{B}(B \to K^* \nu \bar{\nu})_{\rm SM} = (7.2 \pm 1.1) \times 10^{-6}$ Kamenik, Smith. '09 Bartsch et al. '09 10 $10^5 Br(B \rightarrow K^*vv)$ $\mathcal{B}(B \to K \nu \bar{\nu}) < 1.4 \times 10^{-5}$ 5 $\mathcal{B}(B \to K^* \nu \bar{\nu}) < 8.0 \times 10^{-5}$ Babar & Belle '08-'09 0 0 2 4 6 8 10 $10^5 Br(B \rightarrow Kvv)$

E.g.: $B \rightarrow K \nu \nu \nu s$. $B \rightarrow K^* \nu \nu$ with RH currents (interesting model to explain the "Vub puzzle")

A very brief look to D decays

In most realistic NP rare *D* decays are not too interesting for NP searches [*large LD contrib. which is difficult to suppress* - most interesting oservable in the *D* system is <u>CPV in D mixing</u>]

But we should be open also to more exotic possibilities. In this respect rare D decays offer some interesting SM null-tests:

- $D \rightarrow \mu^+\mu^ BR_{SM} \sim few \ 10^{-13}$
- $D \rightarrow \mu e$ $BR_{SM} \sim 0$

A very brief look to D decays

In most realistic NP rare *D* decays are not too interesting for NP searches [*large LD contrib. which is difficult to suppress* - most interesting oservable in the *D* system is <u>CPV in D mixing</u>]

But we should be open also to more exotic possibilities. In this respect rare D decays offer some interesting SM null-tests:

•
$$D \rightarrow \mu^+\mu^ BR_{SM} \sim few \ 10^{-13}$$

• $D \rightarrow \mu e$ $BR_{SM} \sim 0$

Model	${\cal B}_{D^0 o \mu^+ \mu^-}$		
Experiment	$\leq 1.3 \times 10^{-6}$		
Standard Model (SD)	$\sim 10^{-18}$		
Standard Model (LD)	$\sim {\rm several} \times 10^{-13}$		
Q = +2/3 Vectorlike Singlet	$4.3 imes 10^{-11}$		
Q = -1/3 Vectorlike Singlet	$1 \times 10^{-11} \ (m_S/500 \ {\rm GeV})^2$		
Q = -1/3 Fourth Family	$1 \times 10^{-11} \ (m_S/500 \ {\rm GeV})^2$		
Z^\prime Standard Model (LD)	$2.4 \times 10^{-12} / (M_{Z'}(\text{TeV}))^2$		
Family Symmetry	0.7×10^{-18} (Case A)		
RPV-SUSY	$4.8 \times 10^{-9} \ (300 \ {\rm GeV}/m_{\tilde{d}_k})^2$		

Golowich et al. '09

<u>Conclusions</u>

To a large extent, the origin of "flavour" is still a mystery...

But we are making progress:

- We have understood that large new sources of flavour symmetry breaking at the TeV scale are excluded
- But several anomalies in the CKM picture are starting to show up: some of them will go away, some others (with some optimism...) may well be the *first signals of new physics at the TeV scale*.
- <u>Rare decays</u> are the key tool to make progress in this field:
 - They allow us to identify <u>correlations</u> among different non-standard effects \Rightarrow <u>flavour pattern</u> of the new symmetry breaking terms.
 - Clean leptonic/semileptonic *B* decays are those with the largest discovery power in most realistic NP models