Future experiments on rare Kaon decays

T. Spadaro*, LNF INFN

HQ&L 2010 – 10th International Conference on Heavy quarks and leptons

National Frascati Laboratories of INFN, Italy, October the 15th, 2010

*member of the KLOE and NA62 collaborations

Kaon physics results in this conference

	$K_{S,L}$ lifetimes – KLOE	M. Dreucci	
SM flavor test: V_{us}	$K_{\mu3}$ form factors – NA48	M. Ita- Hochgesand	
	V_{us} determination from Kaons	C. Bloise	
SM flavor tests	M flavor tests Lattice inputs for V_{us} , V_{us}/V_{ud}		
SM flavor test: LFV	$K_{e2}/\mathrm{K}_{\mu2}-\mathrm{KLOE}$	B. Sciascia	
	$K_{e2}/K_{\mu 2} - NA62$	A. Sergi	
Rare <i>K</i> decays Chiral pert. theory	Rare decays from NA48 & KLOE	G. Anzivino	
	Kaon radiative decays - NA48	M. Pepe	
	$\pi\pi$ scattering from K_{e^4} decays - NA48	C. Biino	

Kaon physics – the landscape

Kaon is the lightest strange particle, studied since 60's to test fundamental properties of nature

SM (a) $E \sim M_K$ appears remarkably simple:

 $L_{SM} = L_{QCD}(m_u = m_d, m_s) + L_{QED} + L_{IB}(m_u - m_d) + L_{ew}$

only 2 parameters in L_{QCD} : m_s and m_d ~m_u ~ (m_d+m_u)/2

 L_{QED} and L_{IB} isospin-breaking: often neglected, but add 3rd parameter L_{ew} is the link to physics at electroweak scale

breaks many symmetries: P, CP, flavor

Kaons reach the highest sensitivities to CPT violation, QM tests

Competitive with B decays to test new physics in LFV or CPV transitions

CPV from K decay: still a stringent NP test

After 20 years of precision physics: Indirect CPV, $|\varepsilon| = (2.223 \pm 0.010) \times 10^{-3}$

Direct CPV, $R(\epsilon'/\epsilon) = (16.8 \pm 1.4)10^{-4}$

Re(ϵ'/ϵ) \propto Im(V_{td}V_{ts}*), but for a NP test need to precisely evaluate K-- $\pi\pi$ Δ S=1 hadronic elements, a future task for lattice calculations After guadagnoli et al., R(ϵ'/ϵ) used for evaluation of expected value of $|\epsilon|$

See M. Gorbahn talk

Dramatic recent improvements in lattice input to theoretical expectation of $|\epsilon|$

 $Exp \sim 2\sigma$ away wrt expectation...but better discuss unanbiguous NP signals

LFV: search for NP signals from K decays

Universality of ew couplings: a precise NP test

Kaon physics to test H^+ exchange: K_{12}/π_{12} **Test performed by measuring :** $\left| \frac{V_{us}(K_{\ell 2})}{V_{us}(K_{\ell 3})} \times \frac{V_{ud}(0^+ \to 0^+)}{V_{ud}(\pi_{\ell 2})} \right| = 0.999(7)$ **NP** sensitivity from $K \rightarrow \mu \nu \sim as$ that from BR(B $\rightarrow \tau v$) = 1.64(34)×10⁻⁴ tanβ 80 For Belle and Babar updates and a combined fit in 2-Higgs doublet models, see D. Lindemann talk Exclude the region @low M_H and high ⁶⁰ tan β favored by $B \rightarrow \tau v$ **Error dominated by theoretical** 40 uncertainties in form factors Excluded by $R_{\mu 23}$ NP induced by weak right-handed 95% CL 67.28% CL currents can be also tested (there, 20 complement lattice information with Мп **Callan-Treiman scalar ff constraint)** [FlaviaNet arXiv:0801.1817] 200 400

Future rare K decay experiments – T. Spadaro – HQ&L 2010, LNF, 15 October 2010

Golden K modes for new-physics search

FCNC processes dominated by Z penguin and box diagrams

Can give direct information on CKM matrix elements:

No long distance contributions from processes with intermediate γ 's

Hadronic matrix elements can be obtained from BR's of leading K decays

$$K_L \rightarrow \pi^0 \nu \nu$$
 is nearly pure CPV

**SM prediction for
$$K \rightarrow \pi \nu \nu$$**

$$\int_{V} V d = \int_{V} V$$

Hadronic matrix elements from BR(Ke3) via isospin rotation:

$$\kappa_{+} = r_{K^{+}} \frac{3\alpha^2 \operatorname{BR}(K^{+} \to \pi^0 e^{+} \nu)}{2\pi^2 \sin^4 \theta_W} \lambda^8$$

Charm contribute to theory error: non-parametric error ~7% for K⁺, 3% for K_L

SM and BSM prediction for $K \rightarrow \pi v v$

General notes on $K_L \rightarrow \pi^0 vv$ searches

Essential signature: "2 γ + nothing"

All other decays have 2 extra γ or 2 tracks Exception: $K_L \rightarrow \gamma \gamma$, not a big problem since $p_\perp = 0$, $\phi_{12} = 180^\circ$

Main backgrounds:

 $K_L \rightarrow \pi^0 \pi^0$ with 2 lost γ

 $n + gas \rightarrow X\pi^0$, $X\eta$

Hermetic veto, including beam exit

High vacuum decay region

$M(\gamma\gamma) = m_{\pi 0}$ is the only sharp kinematic constraint

Generally used to reconstruct vertex position Additional topological constraints advantageous:

- Small beam cross section
- Measurement of photon directions
- Microbunched beam for TOF constraints

ay region $region R_1$ R_2 R_2 R_2

$$m_{\pi^0}^2 = 2E_1 E_2 \left(1 - \cos\theta\right)$$

$$R_1 \approx R_2 \equiv R = \frac{d\sqrt{E_1 E_2}}{m_{\pi^0}}$$

Veto system performance & experiment design are paramount

KEK 391a: 1st dedicated $K_L \rightarrow \pi^0 vv$ search

Neutral secondary beam from 12 GeV KEK PS Pb and Be filters to screen γ, *n* Forward photon veto Pure CsI crystals $7 \times 7 \times 30 \text{ cm}^3$

Background sources: neutrons in beam

The road to sensitivity improvement: Run I-II

The road to sensitivity improvement: Run III

Run III: Nov - Dec 2005, K_L flux: 3.5 x 10⁹ (0.7 of Run II: 5.0 x 10⁹)

Improvements on RunII:

Special run with Al target, for MC tuning

Optimize event selection:

Acceptance 0.975(67)% (Run II: 0.670%)

Better background evaluation

source		estimated BG		
KL	$K_L \rightarrow 2\pi^0$	0.14 ± 0.05		
	K∟→π⁻e⁺v	4.7(±0.7) x 10 ⁻³		
halo-n	CC02 π ⁰	0.15±0.05		
	CV π ⁰	0.0 (<0.15)		
	CV η	0.14 ± 0.07		
total		0.44 ± 0.10		

t (GeV) ELIMINA Run III SES (preliminary): 2.95 10⁻⁸ 0.25 0.2 *No events found in the signal box:* 0.15 $B(K_L \rightarrow \pi^0 \nu \nu) < 6.8 \ 10^{-8} @ 90\% \ CL$ 0.10.05 (prel. 2009) 200 250 300 350 500 550 600 **45**0 400 Run II—III comb.: BR < 2.6 /10⁻⁸, 90%CL² z (cm)

The future for $K^0 \rightarrow \pi^0 vv$, K^0TO (aka E14)

Detector upgrades for E14

Upgrade summary for E14 vs E391a

	J-PARC KOTO	KEK-E391a	improvement
KL yield/spill	8.1x10 ⁶	3.3x10 ⁵	x30/sec
Run time	12 months	2 months	x6
Decay prob.	4%	2%	x2
Acceptance	3.6%	1%	x3.6
Sensitivity	0.8x10 ⁻¹¹	1.1x10 ⁻⁸	x1300

Schedule:

2009, construction & survey of K_L beamline

2010, construction of CsI calorimeter & engineering run

2011, 1st physics run: 3-7 SM evts/ 3 years

Possible upgrades: 100 SM evts/ 3 years

To reach 10⁻¹², PID & vetoes also reject unclosed bkg (K₁₃, K₁₄, ...)

Kinematics K^+ at rest Must	track K ⁺
Photon vetoes Low-energy photons High-	energy photons
PIDRange π - μ - e decay chainAdva Muor	nced Cerenkov counters

Fixed target approach: E949 @ AGS

The entire AGS beam of 65 x 10¹² (Tp/ spill) at a momentum of 21.5 GeV/c was delivered to the E949 K⁺ production target

Duty Factor: 2.2 s / 5.4 s ~ 40%

1 interaction length Pt target

Before separators: 500π : 500 p : 1 K

After separators: Purity $K:\pi \sim 3-4:1$

Incoming 710 MeV/c K⁺ identified by Č and slowed

down by BeO and Active Degrader

~27% K⁺ stopped in the target (1.6 MHz)

Tracking in 1 T solenoid field

π⁺ identification: Delayed Coincidence
Range
Energy
Momentum
Detect entire π⁺→ μ⁺→e⁺ chain

Final results from E787/E949 (2008)

Combined results, from E787 (1995-8 runs) & E949 (12-weeks run in 2001)

Hopefully not the end of a long story...

... The in-flight approach: NA62 @ CERN*

Improve intensity of existing NA48 beamline by ×50 400 GeV SPS primary proton beam, producing unseparated 75-GeV K⁺ beam:

~800 MHz beam

6% are K⁺, i.e., ~ 50 MHz

~ 5 MHz decay in a 60-m fiducial volume

See dedicated talk by G. Ruggiero

NA62 guiding principles

Support a high-rate environment

high-resolution timing

Kinematic rejection by cutting on missing mass at decay

fast tracking to measure incoming K momentum

high resolution tracking to measure daughter particle momenta

Rejection of $K_{\mu 2,3,4}$, $K_{e2,3,4}$, ... background, PID for all charged particles positive, non-destructive ID for incoming kaon

ID for outgoing daughter pions, muons, electrons

ID for outgoing muons

Rejection of modes with π^0 's and/or (possibly radiative) photons

Hermetic, high-efficiency γ vetoing from 0 out to 50 mrad angles Redundancy of information

The in-flight approach: NA62 @ CERN

18000 300×300 μm² pixels, sensitive area of 60×27 mm²

Technological challenge:

<1% hit mismatch @ 800 MHz \rightarrow 200 ps time resolution read out able to sustain rates up to 150 KHz/pixel

GTK technology and read out

Have to read out with dead time <100 ns, with a charge/pixel varying between 0.8 fC (5000 e-) to 10 fC (60000 e-)

have to correct for slewing effects

maintain noise < 200 e-

operate with reasonable power consumption, < 2 W/cm²

R&D almost completed

Silicon sensor wafer from FBK

2 read out prototypes developed & compared, both with FE circuits in 130-nm IBM CMOS technology

For details, see Report by J. Kaplon et al., IEEE NSS conference, Orlando, FA, USA

Photon vetoing in NA62

Have to reject $K^+ \rightarrow \pi^+ \pi^0$ (*a*) the level of 10^{-12}

Need π^0 rejection of O(10⁻⁸) for γ 's from K decay in fiducial volume (~60 m)

A composite system:

Very small angle, below 2 mrad

A new compact calorimeter

Inefficiency required <10⁻⁶ for γ's above 6 GeV

Small angle, 1 to ~8 mrad:

Re-use NA48 LKr calorimeter, $\sigma_{E}/E = 0.032/\sqrt{E[GeV] + 0.09/E[GeV] + 0.0042}$

Inefficiency measured <10⁻⁵, for γ's above 6 GeV

Large angle, ~8 to 50 mrad:

A new veto system (LAV system)

Inefficiency required < $\sim 10^{-4}$ for 100 MeV < E_{γ} < 25 GeV

Able to operate in a vacuum of 10⁻⁶ mbar

Large angle veto layout and geometry

Rearrange SF4 lead crystals from OPAL in staggered layers (rings) Install rings inside existing vacuum vessel (so called "blue tube")

12 stations of increasing diameter to cover hermetically the range θ = 7–50 mrad

3 different sizes of vacuum vessels (last downstream station operated in air)

4 to 5 layers/station for a total depth of 29 to 37 X_0 , particles traverse > 20 X_0

32 to 48 crystals/layer

A total of ~ 2500 blocks

NA62 expected sensitivity

Decay Mode	Events
Signal: $K^+ \rightarrow \pi^+ \nu \nu $ [flux = 4.8×10 ¹² decay/year]	55 evt/year
$K^+ \rightarrow \pi^+ \pi^0 \ [\eta_{\pi 0} = 2 \times 10^{-8} (3.5 \times 10^{-8})]$	4.3% (7.5%)
$K^+ \rightarrow \mu^+ \nu$	2.2%
$K^+ \rightarrow e^+ \pi^+ \pi^- \nu$	≤ 3%
Other 3 – track decays	≤1.5%
$K^+ \rightarrow \pi^+ \pi^0 \gamma$	~2%
$K^+ \rightarrow \mu^+ \nu \gamma$	~0.7%
$K^+ \rightarrow e^+(\mu^+) \pi^0 \nu$, others	negligible
Expected background	≤13.5% (≤17%)

Aim to obtain O(~10%) signal acceptance with <10% background

year & running efficiency from NA48 story: ~100 days/year, 60% data taking efficiency

NA62 past and future

In 2007-2008, NA62 "phase 1":

• Runs with original NA48/2 detector, beam carefully tuned for the measurement of $R_K = \Gamma(K_{e2})/\Gamma(K_{\mu 2})$ at few per mil (see T. Sergi talk)

• Data acquired useful for high-statistics studies of Kl3 form factor slopes, needed for Vus extraction (see M. Ita-Hochgesand Talk)

- In parallel, R&D studies for new sub-detectors started
- December 2008, approval by CERN research board

In 2009-2010, NA62 "phase 2":

- Collaboration consolidated: at present 191 participants from 25 institutes
- Main beam tests for advanced prototypes (RICH, GTK) or parts of single sub-detectors (LAV)

In 2011-2012, construction and commissioning

In 2013, first physics run

Another player in the game? P996 @ Fermilab

Measure BR(K⁺) at 5% using stopped K⁺

Build a modern version of E949 detector

Use Tevatron as a "stretcher", filled by the main injector:

achieve as high as 95% duty factor

increase the number of stopped K/hour and the running time reduce 10% of protons for NOvA

Expect increase factors on E949:

×11 Detector acceptance

- ×6 Stopped K's/hour
- ×5 Running hours/year

Fermilab proposal P996 submitted October 2009

$K \rightarrow \pi \nu \nu$ sensitivity summary

Expt	Primary beam	Intensity (ppp)	SM evts/yr	Start date + run yrs	Total SM evts
NA62	SPS 450 GeV	3 × 10 ¹²	55	2012+2	110
FNAL K [±]	Booster 8 GeV	2 × 10 ¹³	40	2015+2	80
FNAL K [±]	Project X 8 GeV	2 × 10 ¹⁴	250	2018+5	1250
P996	Tevatron up <150 GeV	1 × 10 ¹³	120	2018+5	600
E14	JPARC-I 30 GeV	2 × 10 ¹⁴	1-2	2011+3	3-7
E14	JPARC-II 30 GeV	3 × 10 ¹⁴	30	2018+3	100
FNAL K_L	Booster 8 GeV	2 × 10 ¹³	30	2016+2	60
FNAL K_L	Project X 8 GeV	2 × 10 ¹⁴	300	2018+5	1500

All dates/estimates are speculative, some are more speculative than others

Summary and outlook: a brilliant future...

Much recent progress in kaon physics:

- Verification of first-row CKM unitarity and SM constraints
- Verification of lepton universality in kaon decays
- Improved knowledge of *CP/CPT* parameters in kaon physics

Still many more results to come:

• Remaining data from NA48, KLOE, others

Longer-term future in kaon physics dominated by $K \rightarrow \pi \nu \nu$:

- Precise SM predictions sensitive probes for BSM physics
- Good measurements can provide insight on BSM flavor structure
- Good chance to know K⁺ BR with 10% precision within ~3 years
- Discussion started for 3% mmts, possibly within 10-15 years

... but (as usual) a lot of tough work on the way

$K_L \rightarrow \pi^0 v v at Protvino: KLOD$

IHEP U-70 neutral beamline:

70 GeV primary beam

2-5×10¹³ ppp, RF microbunching?

Large extraction angle

$$10^8 K_L$$
/pulse, $\langle p_K \rangle = 10 \text{ GeV}$

 n/K_L ratio < 10

TDR complete

Forward veto: Pb/SciFi calorimeter Similar to KLOE calorimeter *X*, *U*, *V* fiber views for shower tracking

Main veto: Shashlyk modules 0.3 mm Pb/1 mm scintillator

In-beam veto: Fiber calorimeter Dual readout: clear + scintillating fibers e/h = 5: ID for neutral beam interactions

$K \rightarrow \pi v v$ and Fermilab Project X

Proposed in 2007 as an interim program while ILC delayed: $v, \mu, K \dots$

1000-SM evt measurements for both $K \rightarrow \pi \nu \nu$ channels

$K^+ \rightarrow \pi^+ \nu \nu$

Compact, E949-like stopped *K*⁺ setup 400 MeV *K*⁺ beam 3T field (up from 1T in E949) Finely segmented range stack Homogenous LXe photon veto? $K_L \rightarrow \pi^0 \nu \nu$

KOPIO-like microbunched beam p_{beam} from TOF event by event Pencil beam collimation like E391a Good geometrical constraints Increases acceptance Eases KOPIO design issues Made possible by high Project-X intensity