Future Neutrino Experiments

Weili Zhong Lawrence Berkeley National Laboratory

HQLIO@ LNF, Frascati, Italy 10-15-2010

Villa Aldobranidini, Frascati

Unknown: θ_{13} , δ_{cp} , sign(Δm_{32}^2)

Last Unknown Mixing Angle θ_{13}

Measure $sin^2 2\theta_{13}$ to a sensitivity of 0.01

θ_{13} in Reactor Neutrino Experiment

$$P(\overline{\nu}_e \rightarrow \overline{\nu}_e) \approx 1 - \sin^2 2\theta_{13} \sin^2 \left(\frac{\Delta m_{31}^2 L}{4E}\right) - \cos^4 \theta_{13} \sin^2 2\theta_{12} \sin^2 \left(\frac{\Delta m_{21}^2 L}{4E}\right)$$

- Low energy \overline{v}_e : 1.8MeV to 10MeV
- Clean measurement of θ_{13} : matter effect negligible, no coupling from δ_{cp}
- Inverse beta decay: cross section is well known
- Near/Far: exact 1/r² extrapolation
- No neutral current background
- Gd-loaded liquid scintillator improves background suppression.

 $\overline{V}_{e} + p \rightarrow e^{+} + n$ $\begin{array}{c} \text{Prompt: } e^{+} \text{ annihilation Delay: neutron capture} \\ \text{Neutrino events: coincidence in time and energy} \\ 0.3b \\ \hline \rightarrow + p \rightarrow D + \gamma (2.2 \text{ MeV}) \text{ (delayed) 180 } \mu s \\ 50 \text{ kb } \\ \hline \rightarrow + Gd \rightarrow Gd^{*} \rightarrow Gd + \gamma's \text{ (8 MeV) (delayed) 28 } \mu s 0.1\% \text{ Gd} \end{array}$

Sensitivity and Schedule

Expected signal and background rates per antineutrino detector

	Daya Bay Near	Ling Ao Near	Far Hall
Antineutrino Signal (events/day)	840	740	90
Overburden (m.w.e.)	260	300	870
Accidental Background/signal (%)	<0.2	<0.2	<0.2
Fast neutron Background/signal (%)	0.1	0.1	0.1
⁸ He/ ⁹ Li Background/signal (%)	0.3	0.2	0.2

Systematic and statistical uncertainty

Source	Uncertainty
Reactor	0.13%
Detector(per module)	0.38%
Statistics	0.2%

Experimental Hall	Physics Ready
Daya Bay Hall	Fall 2011
Ling Ao Hall	Spring 2012
Far Hall	Fall 2012

Under construction

	Thermal	Mass (Tons)	Near		Far		2
	Power (GW)		Distance (m)	Depth (m.w.e.)	Distance (m)	Depth (m.w.e.)	o _{system} (%)
Double Chooz	8.5	10 / 10	400	115	1050	300	0.6
RENO	17.3	16 / 16	290	120	1380	450	0.5
Daya Bay	17.4	40, 40 / 80	363 &481	260 &300	1985 &1613	870	0.38

θ_{13} in Accelerator Neutrino Experiment

• Appearance probability of $v_e^{}$ from $v_{\mu}^{}$ depends on values of $\theta_{13}^{}$, $\delta_{cp}^{}$ and mass hierarchy.

$$P(v_{\mu} \to v_{e}) = \sin^{2}(2\theta_{13})\sin^{2}(\theta_{23})\sin^{2}\left(1.27\Delta m_{31}^{2}\frac{L}{E}\right) + \sin^{2}(2\theta_{12})\cos^{2}(\theta_{23})\sin^{2}\left(1.27\Delta m_{21}^{2}\frac{L}{E}\right) + \sin^{2}(2\theta_{13})\sin(2\theta_{23})\sin(2\theta_{12})\sin\left(1.27\Delta m_{31}^{2}\frac{L}{E}\right)\sin\left(1.27\Delta m_{21}^{2}\frac{L}{E}\right)\cos\left(1.27\Delta m_{32}^{2}\frac{L}{E}\pm\delta_{CP}\right)$$

MINOS results: expected (based on ND data): 49.1±7.0(stat.)±2.7(syst.), observed: 54 in FD, a 0.7σ excess. Phys. Rev. D 82, 051102

For $\delta_{cp}=0$, $\sin^2 2\theta_{23}=1$, $|\Delta m^2_{32}|=2.43 \times 10^{-3} eV^2$: $\sin^2 2\theta_{13}<0.12$ (NH), 0.20 (IH) at 90% C.L.

T2K

- High intensity neutrino beam from J-PARC
- Narrow band beam tuned at oscillation maximum
 - 2.5deg off-axis, peak ~600MeV
 - Quasi Elastic CC dominate: v₁ + n -> l⁻ + p
- Near detector @280m
 - On-axis detector "INGRID"
 - Intensity and direction (profile)
 - Off-axis (toward SuperK direction)
 - Absolute flux/spectrum/v_e
- Far detector: SuperK, 50KT @295km
- Schedule:
 - data taking started in Jan. 2010, beam power ~50KW
 - After Nov. 2010, from ~100KW towards 0.75MW
- Goal: Accumulate 0.75KW×5×10⁷sec
 - v_e appearance: $sin^2 2\theta_{13} \sim 0.008$ (90%CL), 0.018(3 σ)
 - Precise measurement of v_{μ} disappearance.

NOVA

- High intensity neutrino beam from Fermi Lab NuMI beam: upgrade to 0.7MW in Fall, 2011.
- Narrow band beam at oscillation maximum
 - 14mrad, peak ~2GeV
 - Near detector: ~12m off-axis, Far detector:~12km off-axis
- Near and far detector: tracking liquid scintillator calorimeters
- Near detector: 23t, ~1km
- Far detector: 15kt, 810km
 - Sensitive to neutrino mass hierarchy
- Goal: measure $\sin^2 2\theta_{13}$ and θ_{23}
- Schedule: data taking in 2013, and first run will last six years.

Combination of T2K and NOVA: Mass Hierarchy and δ_{cp}

- NOVA will run in neutrino mode and anti-neutrino mode to explore mass hierarchy.
- Combine T2K and NOVA data to reduce degeneracy.

See more details in Mark's talk yesterday

Solar Neutrino Experiments

- Further study of matter-enhanced oscillation
 - Low E neutrino: vacuum-matter transition
 - Spectrum distortion: matter effect in the sun
 - Day/night asymmetry: matter effect in the earth
- Improvement in precision of mixing parameters
 - Solar (+KamLAND) supply constrain on θ_{13}
 - More precise measurement on solar parameters.
- Further information on Solar Models

Borexino Detected ⁷Be(vacuum) and ⁸B(mass) in Liquid Scintillator Detector same detector Stainless Steel Sphere External water tank ^{8.0 °} Nylon Outer Vessel Water P., for LMA Ropes Nylon Inner Vessel Survival probability for v_e , Be: Borexino Fiducial volume 0.7 B: Borexino, (> 3 MeV) ⁸B: Borexino (> 5 MeV) Internal B: SNO (> 4 MeV) **PMTs** 0.6 ANNINGGOOD ALCONTRACTOR OF annan and a second second op: all solar v experiments Buffer 0.5 Scintillator Steel plates for extra $+e^{-}$ $\rightarrow v + e^{2}$ Muon 0.4 shielding PMTs 1000000 0.3 pep 0.2 10-1 10 E, [MeV] arXiv:0808.2868v3

- 100t (fiducial volume) liquid scintilaltor Detector for sub-MeV solar neutrinos
- Low threshold: 200KeV
- Ultralow background: a few tens cpd/100t, it's a few 10⁻⁹Bg/kg
 - 3800m (mwe) depth in LNGS, and ultra-clean liquid scintillator
- Day/night asymmetry from ⁷Be
 - $A_{ND}=2(N-D)/(N+D)=0.007\pm0.073$ (stat.) No obvious day/night asymmetry.
- pp-chain flux in SSM only has 1% uncertainty: improve the precision of solar mixing parameters. Flux measurement of pep, CNO, pp....

<u>See more details in</u> <u>Michael's talk yesterday</u>

Neutrino Mass Beta Decay Double Beta е е Decay $m_v < 2.3 eV$ m_{ββ}<0.35eV, evidence? $m_{\beta\beta} = \left| \sum_{i} U_{\rm ei}^2 \cdot m_{\nu_{\rm i}} \right|$ 3H fermions mass [GeV] erste Generation zweite Generation bosons dritte Generation Top $m_{\nu_{\rm e}}^2 = \sum |U_{\rm ei}|^2 \cdot m_{\nu_{\rm i}}^2$ Bottom Charm Down Myon Strange Tau Elektron Elektron-Neutrino Myon-Neutrino 200 Cosmology Neutrino Tau-100 Neutrino neutrinos Oscillation Wavelength λ [h⁻¹ Mpc] Photon 10 101 1000 105 massless Gluon Current power spectrum P(k) [(h⁻¹ Mpc)³] 0 00 01 01 01 bosons V₃ Δm_{23}^2 LSS $0.04 \text{eV} (\text{V}\Delta \text{m}_{atm}^2) < \text{m} (\text{heaviest } v_i)$ V2 Cosmic Microwave Background Δm_{12}^2 SDSS galaxies Cluster abundance $m_1 + m_2 + m_3 < (0.4-1.0)eV$ Weak lensing Lyman Alpha Forest Teomark & Zaldarriaga, astro-ph/0207047 + update Offset? $\Omega_{\nu}h^2 = \frac{\Sigma m_{\nu}}{93.2eV}$ 1 1 1 1 1 1 1 0.001 0.01 0.1 10 1 m=0 Wavenumber k [h/Mpc] 8

Mass Measurement

Beta Decay

- Model independent •
 - Majorana or Dirac, CP phase
 - Nuclear matrix element
- Squared neutrino mass (absolute) •
- Current discovery potential: degeneracy ٠

Ονββ Decay

- Model dependent
- Majorana neutrino
- Effective neutrino mass
- Current discovery potential: IH

Hep-ph/0606054

 10^{-2}

 10^{-1}

disfavoured by cosmology

Beta Decay

Model-Independent Measurement: Kinematics and energy conservation

$$\frac{\mathrm{d}\Gamma_i}{\mathrm{d}E} = C \cdot p \cdot (E + m_e) \cdot (E_0 - E) \cdot \sqrt{(E_0 - E)^2 - m_i^2} F(E,Z) \cdot \theta(E_0 - E - m_i)$$

$$(v - \mathrm{mass})^2$$

If $m_v \neq 0$: shift the endpoint and change the shape

Measure the region close to endpoint:

- Low endpoint beta source
- ✓ High count rate
- High energy resolution
- Extremely low background

KATRIN

Tritium source, endpoint 18.6KeV, $t_{1/2}$ 12.3y, high activity $10^{11}\beta/s$

Schedule: Start main spectrometer test in 2011, Commissioning of completed setup in 2012.

KATRIN Sensitivity

Discovery potential: $m_v = 0.35eV (5\sigma)$

Sensitivity: m_v < 0.2eV (90% C.L.)

 $\Delta m_{tot}^2 = (\Delta m_{stat}^4 + \Delta m_{stat}^4)^{1/2}$ $\approx 0.025 \text{ eV}^2/c^4$

Limit of KATRIN: Source and detector are separate

MARE experiment (¹⁸⁷Re, endpoint 2.47KeV, t_{1/2} 4.32×10¹⁰y): Use bolometer technology, source is detector. MARE2: ~0.2eV

Neutrinoless Double Beta Decay

- $0\nu\beta\beta$: $\Delta L\neq 0$, lepton number violation.
- Standard interpretation: light, massive majorana neutrinos ($v = \overline{v}$)
- Other machenisms: negligible...
- Even-even nucleus of larger Q_{ββ}

$$(T_{1/2}^{0\nu})^{-1} = G_{0\nu}(Q_{\beta\beta}, Z) |M_{0\nu}|^2 \langle m_{\beta\beta} \rangle^2$$

Neutrinoless Double Beta Decay

Requirement:

- Source (is detector) mass: ~100kg ~1ton
- Extremely low Background: a few cts/keV•t•y
 - Go deep underground, material purification...
- Good energy resolution
- Nuclear matrix element uncertainty
 - need several experiments with different nuclei

0vββ Decay Experiments

Name	Isotope	Technique	Mass	Location	Sensitivity	Time
CUORICINO	Te-130	Bolometer	11kg	LNGS	0.40eV	2003 - 2008
CUORE	Te-130	Bolometer	200kg	LNGS	0.22eV	2013 -
COBRA	Cd-116	Semiconductor	183kg	LNGS		
GERDA I/II	Ge-76	Semiconductor	18/40kg	LNGS	75-129meV	2009 (comiss.)
Majorana	Ge-76	Semiconductor	30kg	DUSEL	20-41meV	2011 -
NEMO-3	Mo-100	Tracking-calo	7kg	LSM	0.3-0.9eV	till 2010
SuperNEMO	Se-82	Tracking-calo	100+kg	LSM	40-110meV	2013 -
SNO+	Nd-150	Scintillator	44kg	SNOlab	150meV	2012 -
KamLAND-Zen	Xe-136	Scintillator	400kg	Kamioka	60meV	2011 -
CANDLES III	Ca-48	Scintillator	305kg	Kamioka		
EXO-200	Xe-136	Liquid TPC	200kg	WIPP	109-135meV	2009 (comiss.)
EXO	Xe-136	Gas TPC	1-10ton	SNOlab		
completed construction or preparation R&D						

And some other experiments...

Backup

LSND Anomaly

- LSND: |Δm²|~1eV² (L~30m, E~30MeV) inconsistent with solar and atmospheric results. Sterile neutrino?
- MiniBoone was designed to test LSND signal.
 - Same L/E (L~500m, E~500MeV).
 - Different systematic, energy, and event signature.
 - E<475MeV: electron-like events excess.
 - MiniBoone is running to improve statistics.
- MicroBoone at FNAL is following on.
- MINOS NC event rate is not diminished (f_s<0.22 (NH, 90%CL)), disfavored sterile neutrino appearance.
- Solar neutrino experiments: may detect sterile neutrino in pp-chain after θ_{13} .

