Leptonic D/D_s decays and decay constants

Marko Starič

Jožef Stefan Institute, Ljubljana

Heavy Quarks and Leptons 2010

M. Starič (IJS)

Leptonic D/D_s decays and decay constants Frascati, 11-15 October, 2010 1 / 20

4 2 5 4 2 5

Introduction

- Leptonic decays: $D^+_{(s)}
 ightarrow \ell^+
 u$, $\ell = e, \mu, au$
- In SM these decays proceed via tree diagram:

Decay rate:

$$\Gamma(D_{(s)}^{+} \to \ell^{+}\nu) = \frac{G_{F}^{2}}{8\pi} f_{D_{(s)}^{+}}^{2} m_{\ell}^{2} M_{D_{(s)}^{+}} \left(1 - \frac{m_{\ell}^{2}}{M_{D_{(s)}^{+}}^{2}}\right)^{2} |V_{cd(cs)}|^{2}$$

• SM branching fraction ratio:

e :
$$\mu$$
 : au = 2.35 $imes$ 10⁻⁵ : 1 : 2.65 (9.76)

- $f_{D_{(s)}^+}(\text{decay constant})$: overlap of heavy and light-quark wave-functions
- Aim of measurements: precision test of non-pert. QCD techniques

Recent measurements

• CLEO-c • $D^+ \rightarrow \mu^+ \nu$ • $D^+_s \rightarrow \mu^+ \nu$ • $D^+_c \rightarrow \tau^+ \nu, \tau^+ \rightarrow \pi^+ \nu$

- $D_s \rightarrow \tau^+ \nu, \tau^+ \rightarrow \pi^- \nu$ • $D_s^+ \rightarrow \tau^+ \nu, \tau^+ \rightarrow e^+ \nu \nu$ • $D_s^+ \rightarrow \tau^+ \nu, \tau^+ \rightarrow \rho^+ \nu$
- Belle

•
$$D_s^+ \rightarrow \mu^+ \nu$$

BaBar

$$\begin{array}{l} \bullet \quad D_s^+ \rightarrow \mu^+ \nu \\ \bullet \quad D_s^+ \rightarrow \tau^+ \nu, \ \tau^+ \rightarrow e^+ \nu \nu \\ \bullet \quad D_s^+ \rightarrow \tau^+ \nu, \ \tau^+ \rightarrow \mu^+ \nu \nu \end{array}$$

PRD 78, 052003 (2008) PRD 79, 052001 (2009) PRD 79, 052001 (2009) PRD 79, 052002 (2009) PRD 80, 112004 (2009)

PRL 100, 241801 (2008)

arXiv:1008.4080 (2010) arXiv:1008.4080 (2010) arXiv:1008.4080 (2010)

Measurement techniques

Common to all analyzes:

- Fully reconstruct one D as "the tag"
- then analyze decay of second *D* to extract exclusive or inclusive properties
- \bullet high tagging efficiency $\sim 20\%$

CLEO-c: $D^+ \to \mu^+ \nu$ (818 pb⁻¹)

PRD 78, 052003 (2008)

Measurement:

- Use $e^+e^-
 ightarrow D^+D^-$ at $\psi(3770)$
- Pure DD, no additional particles
- Tag side:
 - reconstructed in six decay modes
 - tagging efficiency 22%
 - in total 460 000 signal tags
- Signal side:
 - single extra track of opposite charge to the tag and with $E_{\rm cal} < 300$ MeV (minimum ionizing)
 - missing mass near zero (neutrino)
 - find 149.7 \pm 12.0 $\mu\nu$ signal events (fixed $\tau/\mu)$ or 153.9 \pm 13.5 $\mu\nu$ and 13.5 \pm 15.3 $\tau\nu$
 - backgrounds: $\tau^+ \nu$, $\pi^0 \pi^+$, $\overline{K}^0 \pi^+$, other

CLEO-c:
$$D^+ \to \mu^+ \nu$$
 (818 pb⁻¹)

• Assuming the SM ratio for $\tau^+\nu/\mu^+\nu$:

$$\mathcal{B}(D^+ o \mu^+
u) = (3.82 \pm 0.32 \pm 0.09) \times 10^{-4}$$

 $f_{D^+} = (205.8 \pm 8.5 \pm 2.5) \mathrm{MeV}$

• Floating $\tau^+ \nu / \mu^+ \nu$ ratio:

$${\cal B}(D^+ o \mu^+
u) = (3.93 \pm 0.35 \pm 0.09) imes 10^{-4}$$

$$f_{D^+} = (207.6 \pm 9.3 \pm 2.5) \mathrm{MeV}$$

- Unquenched Lattice QCD calculations in good agreement:
 - $f_{D^+} = (207 \pm 4) \text{MeV}$ • $f_{D^+} = (207 \pm 11) \text{MeV}$ E. Follana et al., PRL 100, 062002 (2008) C. Aubin et al., PRL 95, 122002 (2005)

• • = • • = •

CLEO-c: $D_s^+ \rightarrow \mu^+ \nu \& D_s^+ \rightarrow \tau^+ \nu (\rightarrow \pi^+ \nu \nu)$ (600 pb⁻¹)

PRD 79, 052001 (2009)

Measurement:

- Use $e^+e^-
 ightarrow D^+_s D^{*-}_s$, $D^{*-}_s
 ightarrow \gamma D^-_s$ at 4170 MeV
- Tag side:
 - Fully reconstruct $D_s\gamma$ to look for another D_s
 - D_s reconstructed in nine decay modes
 - tags selected in missing mass recoiling against $D_{\rm s}\gamma$
 - \longrightarrow for $D_s D_s^*$ events this always peaks at M_{D_s}
 - in total 44 000 signal tags found in missing mass spectrum

M. Starič (IJS)

Leptonic D/D_s decays and decay constants Frascati, 11-15 October, 2010

7 / 20

CLEO-c: $D_s^+ \to \mu^+ \nu \& D_s^+ \to \tau^+ \nu (\to \pi^+ \nu \nu)$ (600 pb⁻¹)

• Signal side:

- single extra track with opposite charge to tag, not being identified as electron or kaon, with
 (a) E_{cal} < 300 MeV (99% μ, 55% π) or
 (b) E_{cal} > 300 MeV (1% μ, 45% π)
- 2D fit to *D_s*-tag mass and missing mass to extract signal yields
- cases (a) and (b) fitted simultaneously
- find 235.5 \pm 13.8 $\mu\nu$ events and 125.6 \pm 15.7 $\tau\nu(\tau \rightarrow \pi\nu)$ events
- backgrounds: about 10 events in total $\tau^+ \rightarrow \pi^+ \pi^0 \nu, \mu^+ \nu \nu,$ $D_s^+ \rightarrow \pi^+ \pi^0 \pi^0, K^0 \pi^+, \eta \pi^+,$

CLEO-c: $D_s^+ \rightarrow \mu^+ \nu \& D_s^+ \rightarrow \tau^+ \nu (\rightarrow \pi^+ \nu \nu)$ (600 pb⁻¹)

Results:

• Fix $\tau \nu / \mu \nu$ ratio at SM prediction :

$$\mathcal{B}(D_s^+ o \mu^+
u) = (0.591 \pm 0.037 \pm 0.018)\%$$

• Float $\tau \nu / \mu \nu$ ratio:

$$egin{aligned} \mathcal{B}(D_s^+ o \mu^+
u) &= (0.565 \pm 0.045 \pm 0.017)\% \ \mathcal{B}(D_s^+ o au^+
u) &= (6.42 \pm 0.81 \pm 0.18)\% \end{aligned}$$

• Ratio is consistent with SM prediction of 9.76:

$$R \equiv \frac{\Gamma(D_s^+ \to \tau^+ \nu)}{\Gamma(D_s^+ \to \mu^+ \nu)} = 11.4 \pm 1.7 \pm 0.2$$

Decay constant:

$$\begin{split} f_{D_s^+} &= (257.6 \pm 10.3 \pm 4.3) \mathrm{MeV} \qquad (\mu^+ \nu) \\ f_{D_s^+} &= (278.0 \pm 17.5 \pm 4.4) \mathrm{MeV} \qquad (\tau^+ \nu) \end{split}$$

M. Starič (IJS)

CLEO-c: $D_s^+ \rightarrow \tau^+ \nu$, $\tau^+ \rightarrow \rho^+ \nu$ (600 pb⁻¹)

PRD 80, 112004 (2009)

Measurement:

- $e^+e^-
 ightarrow D^+_s D^{*-}_s$, $D^{*-}_s
 ightarrow \gamma D^-_s$ at 4170 MeV
- Tag side: same as for $D_{s}^{+} \rightarrow \mu^{+} \nu$
- Signal side:
 - event with exactly one charged pion forming $\rho^+ \to \pi^+ \pi^0$
 - use missing mass (not peaking at zero!) and extra energy in the calorimeter (E_{extra})
 - subtract combinatorial bkg. using D_s-tag sidebands; use known branching fractions and MC shapes to model other backgrounds
 - fit MM^2 distribution in the first two $E_{\rm extra}$ bins
 - signal yields: $155.2 \pm 16.5, \ E_{\mathrm{extra}} < 0.1 \ \mathrm{GeV}$

43.7 \pm 11.3, 0.1 < $E_{\rm extra}$ < 0.2 GeV

CLEO-c:
$$D_s^+ \rightarrow \tau^+ \nu$$
, $\tau^+ \rightarrow \rho^+ \nu$ (600 pb⁻¹)

Branching fraction:

$$\mathcal{B}(D_s^+ o au^+
u) = (5.52 \pm 0.57 \pm 0.21)\%$$

- Consistent with their measurement in $\tau^+ \rightarrow \pi^+ \nu$ mode $(\mathcal{B}(D_s^+ \rightarrow \tau^+ \nu) = (6.42 \pm 0.81 \pm 0.18)\%)$
- Decay constant:

$$f_{D_s^+} = (257.8 \pm 13.3 \pm 5.2) \mathrm{MeV}$$

イロト 不得 トイヨト イヨト 二日

CLEO-c: $D_s^+ \rightarrow \tau^+ \nu$, $\tau^+ \rightarrow e^+ \nu \nu$ (600 pb⁻¹)

Measurement:

PRD 79, 052002 (2009)

- $e^+e^-
 ightarrow D^+_s D^{*-}_s$, $D^{*-}_s
 ightarrow \gamma D^-_s$ at 4170 MeV
- Tag side:
 - similar to $D_s^+ \to \mu^+ \nu$
 - only cleanest modes used ($D_s^- o \phi \pi^-$, $D_s^- o K^- K^{*0}$, $D_s^- o K^- K_s^0$)
- Signal side:
 - event with exactly one electron
 - use $E_{\mathrm{extra}} < 400$ MeV
 - subtract combinatorial bkg. using D_s -tag sdb.
 - estimate $D_s^+
 ightarrow K_L^0 e^+
 u$ peaking bkg. from MC
 - E_{extra} sideband to estim. D_s semileptonic bgk.
 - signal yield: 180.6 ± 15.9

Results:

$$\mathcal{B}(D_s^+ \to \tau^+ \nu) = (5.30 \pm 0.47 \pm 0.22)\%, \quad f_{D_s^+} = (252.5 \pm 11.1 \pm 5.2) \text{MeV}$$

CLEO-c: summary

TABLE IV: Recent absolute measurements of f_{D_s} from CLEO-c			
Experiment	Mode	\mathcal{B} (%)	f_{D_s} (MeV)
This result	$\tau^+ \nu \ (\rho^+ \overline{\nu})$	$(5.52\pm 0.57\pm 0.21)$	$257.8 \pm 13.3 \pm 5.2$
CLEO-c [9]	$\tau^+\nu,~(\pi^+\overline{\nu})$	$(6.42\pm 0.81\pm 0.18)$	$278.0 \pm 17.5 \pm 4.4$
CLEO-c [16]	$\tau^+\nu~(e^+\nu\overline{\nu})$	$(5.30\pm 0.47\pm 0.22)$	$252.6 \pm 11.2 \pm 5.6$
Average	$\tau^+ \nu$	$(5.58\pm 0.33\pm 0.13)$	$259.7 \pm 7.8 \pm 3.4$
CLEO-c [9]	$\mu^+ u$	$(0.565\pm 0.045\pm 0.017)$	$257.6 \pm 10.3 \pm 4.3$
Average	$\tau^+\nu+\mu^+\nu$		$259.0 \pm 6.2 \pm 3.0$

PRD 80, 112004 (2009)

• CLEO-c average:

$$f_{D_s^+} = (259.0 \pm 6.2 \pm 3.0) \mathrm{MeV}$$

• Ratio consistent with lepton universality:

$$\frac{f_{D_s^+}(D_s^+ \to \tau^+ \nu)}{f_{D_s^+}(D_s^+ \to \mu^+ \nu)} = 1.01 \pm 0.05$$

Belle:
$$D_s^+ \rightarrow \mu^+ \nu$$
 (548 fb⁻¹)

PRL 100, 241801 (2008)

Measurement:

- $e^+e^- \rightarrow c\overline{c}$ at $\Upsilon(4S)$
 - use events of the type: $D^{\pm,0}K^{\pm,0}XD_s^{*+}$
 - $X = n\pi$ or $X = n\pi \gamma$ (fragmentation)
- Tag side:
 - $\bullet\,$ consists of D and K
 - D reconstructed in $D \rightarrow Kn\pi$, n = 1, 2, 3 (total $\mathcal{B} \approx 25\%$)
- Signal side:
 - $\bullet~{\rm consists}~{\rm of}~D_s^{*+}\to D_s^+\gamma$
- Use recoil mass:
 - against $DKX\gamma$ counts total D_s
 - against $DKX\gamma\mu$ counts $D_s \rightarrow \mu\nu$

Belle:
$$D_s^+ \to \mu^+ \nu$$
 (548 fb⁻¹)

• Branching fraction:

$$\mathcal{B}(D_s^+ o \mu^+
u) = (0.644 \pm 0.076 \pm 0.057)\%$$

- Consistent with CLEO
- Decay constant:

$$f_{D_s^+} = (275 \pm 16 \pm 12) \mathrm{MeV}$$

イロト イポト イヨト イヨト

BaBar: $D_s^+ \rightarrow \mu^+ \nu$ & $D_s^+ \rightarrow \tau^+ \nu$ (521 fb⁻¹)

arXiv:1003.3063 (2010)

- Most recent measurement, not yet published
- Same method as Belle
- Measure also $D^+_s \to \tau^+ \nu$ in $\tau \to e \nu \nu$ and $\tau \to \mu \nu \nu$
- yields in this case extracted from $E_{\rm extra}$ Results:
 - Branching fractions:

$$\begin{split} \mathcal{B}(D_s^+ \to \mu^+ \nu) &= (0.602 \pm 0.038 \pm 0.034)\% \\ \mathcal{B}(D_s^+ \to \tau^+ \nu) &= (5.07 \pm 0.52 \pm 0.68)\% \\ \mathcal{B}(D_s^+ \to \tau^+ \nu) &= (4.91 \pm 0.47 \pm 0.54)\% \end{split}$$

• Consistent with CLEO and Belle

BaBar:
$$D_s^+ \rightarrow \mu^+ \nu \& D_s^+ \rightarrow \tau^+ \nu$$
 (521 fb⁻¹)

• Decay constant:

$$\begin{split} f_{D_s^+} &= (265.7 \pm 8.4 \pm 7.7) \text{MeV} \quad (\mu\nu) \\ f_{D_s^+} &= (247 \pm 13 \pm 17) \text{MeV} \quad (\tau_{e\nu\nu}\nu) \\ f_{D_s^+} &= (243 \pm 12 \pm 14) \text{MeV} \quad (\tau_{\mu\nu\nu}\nu) \end{split}$$

• Error-weighted average:

$$f_{D_s^+} = (258.6 \pm 6.4 \pm 7.5) \mathrm{MeV}$$

• CLEO-c average: $f_{D_s^+} = (259.0 \pm 6.2 \pm 3.0) \text{MeV}$

Summary of $f_{D_s^+}$ measurements

- Naive average CLEO+Belle+BaBar: $f_{D_s^+} = (260.1 \pm 5.4) \text{ MeV}$
- HFAG average (for FPCP10 latest BaBar results not included):
 f_{D[±]} = (254.6 ± 5.9) MeV

Comparison with Lattice QCD

- Most precise unquenched Lattice QCD calculations (by HPQCD):
 - $f_{D_s^+} = 241 \pm 3 \text{ MeV}$ E. Follana et al., PRL 100, 062002 (2008)
 - $f_{D_s^+} = 248.0 \pm 2.5$ MeV C.T.H. Davies et al., arXiv:1008.4018 (2010)
- Measurements:
 - $f_{D_s^+} = 254.6 \pm 5.9$ MeV [HFAG average with old BaBar results]
 - $f_{D_s^+} = 260.1 \pm 5.4$ MeV [my naive average with new BaBar results]
- New HPQCD result in good agreement with recent HFAG average ($\sim 1\sigma$ away); the agreement with my naive average is at 2σ .

(本間) (本語) (本語) (語)

Conclusions

- LQCD/experiment discrepancy caused some excitement when first HPQCD result became available;
- since then several new measurements, experimental error significantly decreased;
- but also new value from HPQCD, higher than previous;
- at the moment no significant discrepancy;
- need further LQCD results to confirm the most precise determination up to date;
- need BES III results to improve the experimental precision.

イロト イポト イヨト イヨト